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Abstract
Convolutional neural networks (CNN) have become a popular choice for image segmen-
tation and classification. Internal body images are obscure in nature with involvement of
noise, luminance variation, rotation and blur. Thus optimal choice of features for machine
learning model to classify bleeding is still an open problem. CNN is efficient for attribute
selection and ensemble learning makes a generalized robust system. Capsule endoscopy
is a new technology which enables a gastroenterologist to visualize the entire digestive
tract including small bowel to diagnose bleeding, ulcer and polyp. This paper presents a
supervised learning ensemble to detect the bleeding in the images of Wireless Capsule
Endoscopy. It accurately finds out the best possible combination of attributes required to
classify bleeding symptoms in endoscopy images. A careful setting for CNN layer options
and optimizer for back propagation after reducing the color palette using minimum variance
quantization has shown promising results. Results of testing on public and real dataset has
been analyzed. Proposed ensemble is able to achieve 0.95 on the public endoscopy dataset
and 0.93 accuracy on the real video dataset. A detailed data analysis has also been incorpo-
rated in the study including RGB pixel intensities, distributions of binary classes and various
class ratios for training.

Keywords Convolutional neural networks · Ensemble · Image processing ·
Capsule endoscopy

1 Introduction

Convolutional Neural Networks (CNN) has become popular for wide range of image pro-
cessing applications including Wireless Capsule Endoscopy (WCE) due to its powerful
feature extraction and classification faculties. CNN is one of the most popular and robust
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class of deep neural networks [20]. It is particularly useful for finding patterns in the images
to recognize objects, faces, and scenes. They have the ability to learn directly from the
dataset of the images and thus detecting patterns to classify images and thereby eliminating
the need for manual feature extraction. It is a synthetic neural network to perform image
analysis through pattern recognition with the help of non linear activation functions and
neuron weights, calculated during training process. This property of pattern detection is
incredibly helpful to make CNN of the utmost importance. It has hidden layers known as
convolutional layers as its basis which makes it completely different from normal Multi-
Layer Perceptron (MLP) [8]. These convolutional layers perform scanning operations on
the image to look for various features. They receive the input, rework in a way to concise it
and forward it to selected subsequent layers. Nowadays CNN has become a really power-
ful tool for solving image classification tasks as they are able to learn highly discriminating
features from raw pixel intensities. However, their applicability to medical image analysis
is restricted by the non-availability of enormous sets of annotated knowledge needed for
training the CNN model. Although image analysis has been the foremost widespread use
of CNN, they can even be used for different data type analyses including classification and
regression [21].

Wireless Capsule Endoscopy (WCE) is a new technique to visualize entire digestive
trace including small bowel using non-invasive means. It is primarily used to examine
areas in small intestine where other endoscopy methods fail. The paper proposes a new
CNN augmented architecture for detecting the obscure bleeding cases from wireless cap-
sule endoscopy images. Nevertheless, the proposed method is general and can be utilised for
other image classification applications as well. Below are the challenges and contributions
of the underlying study.

Challenges

1. In-vivo internal body organ images obtained from capsule endoscopy suffer from
various issues such as (a) movement of capsule camera for site capturing (b) organ
movements (c) non-ideal luminance and focal conditions to capture (d) no control over
the movement of both camera and the organs [4].

2. Images suffer from compression resulting in information loss. Moreover noise and blur
are involved during capture phase [15].

3. Data collected for anomaly detection is often imbalanced with greater instances of nor-
mal case images relatively. Sometimes the ratio is 1000:1 for healthy:sick while making
the classification problem difficult to formulate [1].

4. Optimal CNN architecture also depends upon the underlying data distribution along
with layer+parameter tuning. Therefore it is a meta-heuristic problem without a clear
cut well defined solution [38].

Contribution

1. This paper proposes a CNN augmented ensemble architecture for training, validation
and testing the obscure bleeding symptoms from Capsule Endoscopy (CE) images.

2. For ensemble, copies of the image data have been generated using synthetic augmenta-
tion by introducing rotation, blur, illuminance and noise.

3. Color palette reduction has been used using minimum variance quantization, studied
in [32] to get 24 colors in the image for optimal balance of accuracy and time-space
complexity.

4. Data distribution analysis of the RGB pixel intensities has been studied in detail to
demonstrate the complexity of the classification problem.
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5. The experimental analysis of the proposed technique has been performed on the public
and real dataset and compared with other state-of-art methods.

This paper is structured as follow: Section 2 is about the background of CNN and WCE,
Section 3 is about literature survey to trigger the research motivation, Section 4 is about pro-
posed method, Section 5 is about results and experiments and finally Section 6 is conclusion
and future possibilities.

2 Background - CNN andWCE

A brief discussion about CNN and WCE has been presened in this section with relevant
illustrations.

2.1 Convolutional neural networks

According Professor Geoffrey Hinton (father of convolutional networks) in [22], factors
responsible for increased use of CNN are as follows:

• Eliminate the need of manual feature extraction thereby, saving time and labour. CNN
mimics human intelligence to learn from input image examples automatically.

• CNN produce state-of-the-art recognition results with improved quality and perfor-
mance.

• It can be retrained for new recognition tasks, enabling you to build on pre-existing
networks.

CNN is composed of an input layer, output layer, and many hidden convolutional layers
as intermediate layers (Fig. 1). These layers perform operations that alter the data with the
intent of learning features specific to the data. Fundamental inherent components of CNN
are: convolution, activation function such as Rectified Linear Unit (ReLU), pooling and
fully connected layer. CNN has varied filters to facilitate the pattern recognition ranging
from simple to obscure for automatic image feature extraction.

Images features may be colors, texture, boundaries or shapes which are detected by using
various geometric filters. Classical conception was that deeper the network, more refined are
the filters to detect mature features at the cost of computation time. But latest architectures
are able to perform better with fewer layers studied in [11]. In convolutional layer, the block
of pixel set (convolution matrix) moves over the whole image while filtering across every
block of pixels of the input image.

Output of last convolutional block will yield the feature volume. As an example, Fig. 12
shows the features from three convolution layers and fully connected layers for example

Fig. 1 Basic structure of CNN involved in binary classification
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gastral images case study. The features are present in the output of the convolutional chan-
nels. The fully connected layer produces representation vectors that already digested the
features.

It explains about the automatic feature learning and classification phases of CNN frame-
work which is similar to identify bleeding against normal images in endoscopy images for
the underlying case.

CNN terminology Convolution means to blend two functions simultaneously and can be
described as follows in case of two variables for digital images:

(f ∗ g)(x, y) =
N∑

i=0

N∑

j=0

f (i, j).g(x − i, y − j) (1)

where f, g are two functions with x, y variables, i, j are indices that run for a N × N pixel
image for example. The dot ‘.’ on the right hand side is the element by element product. Thus
the convolution is a sum of pointwise products of function values, which is conditioned to
traversal. CNN is mostly used to learn from three channel coloured image with input size
of 256 × 256 × 3 i.e. the intensity matrices (0-255 values) for R,G and B channels. Input
images are known as input volume. Kernels are small squared matrices which are convolved
with input volume. This process generates activation maps which indicate the highlighted
regions detected in the image. During the training process, the kernel matrix values change
to extract required features and highlight the important regions for learning. Details can be
found in [31]. In CNN, the receptive field (a two dimensional region say 5 × 5) specify
the required neuron connections instead of all possible neuron connections. So, if the input
volume is 28 × 28 × 3 and receptive field is 5 × 5, then in convolutional layer, every
neuron is connected to 5 × 5 × 3 in the input volume for all 3 color channels. Therefore,
number of neuron weights will be 75 which gets updated during successive iterations of
Back-propagation similar to a feed-forward network.

CNN architecture Architecture of Convolutional Neural Network consists of following
layers (1) Convolutional layer (2) Pooling layer (3) Rectified Liner Unit layer (4) Fully
connected layer. The CNN structure anatomy for the proposed network is shown in Table 1

1. Convolutional layer performs the operations of convolution on the input volume and
responsible for neutron firing. It has three dimensional structure due to RGB channels.
Neuron connections are defined by the receptive field. This layer calculates the low
level image features such as lines, edges and corners. By combining multiple maps,
each output map feature is calculated as follows:

yt
k = f

⎛

⎝
∑

i∈Mk

xt−1
i ∗ Kt

ik + bt
k

⎞

⎠ (2)

where t is t th layer, M is a set of input maps , Kik is convolutional kernel, bk is bias.
Please refer [31] for details.

2. Pooling layer reduces the dimensions (down-sampling) of input volume for successive
convolutional operations by keeping the depth same. Down-sampling avoids over-
fitting and reduces the overhead. Similar to convolutional layer, it uses sliding window
using max or average operations.
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Table 1 CNN structure anatomy
for the proposed network Sr Variable

1 Image Input 100x100x3

8, 3x3 Convolution - 1

2 Batch Normalization - 1

ReLU-1

2x2 Max Pooling - 1

16, 3x3 Convolution-2

3 Batch Normalization-2

ReLU-2

2x2 Max Pooling-2

32, 3x3 Convolution-3

Batch Normalization-3

4 ReLU-3

Fully Connected

5 Softmax

6 Classification Output

3. ReLu layer uses the function max(0, x) but it is not differentiable at (0, 0). Therefore
a smoother function is used. For example Softplus function which is integral of the
Sigmoid function as studied in [47].

f (x) = ln(1 + ex) (3)

4. Fully connected layer is completely connected with its preceding layer and follows the
output layer. It is the last stage of CNN.

After convolution, the size of the output image can be calculated using the following formula
[31]:

W2 = W1 − F + 2P

S
+ 1 (4)

where W is input volume, F is the receptive field, P is the padding value, S is the stride.
For example, let the image has size 256 × 256 × 3, (W1 = 256), S = 2, F = 4, P = 0.
Then W2 = 256−4+2.0

2 + 1 = 128.
The convolution, pooling, ReLu layer operations are repeated over tens or hundreds of

layers, with each layer learning to identify different features. After CNN layers are trained,
the CNN architecture shifts to classification phase which is the final phase of its life cycle.
The last but one layer is a fully connected layer that outputs a vector equivalent to length of
number of classes (binary in our case) that the network will be able to predict. This vector
contains the probabilities for each class of any image being classified. The final layer of the
CNN architecture uses a classification layer such as softmax to provide the output of the
classification of the model.

2.2 Wireless capsule endoscopy

It involves a pill camera similar to the the size of a large vitamin tablet. Two frames per
second are recorded by the camera. The patient swallows the capsule and the camera will
capture the pictures of entire gastrointestinal tract. Capsule records for about 8 hours and
delivers about 55,000 images to the receiver which is put on the waist of the person being
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examined. When this data is transferred into the computer, the gastroenterologist can see
the entire GI tract. The example images of small bowel bleeding symptoms against normal
images have been shown in the Fig. 2. The internal body images are blurry red brown
in color but bleeding images are more saturated in redness. Digestive tract may involve
bleeding, ulcers, tumors and polyp to damage on the intestinal wall or mucous membrane.
Capsule endoscopy is mainly used to find the cause of unexplained bleeding in the digestive
tract or in case of inflammation or tumors in the small intestine.

Capsule endoscopy is a safe procedure involving little risks only such as the capsule
might remain lodged in the body rather than leaving the body through bowel movement.
The purpose is not only to identify bleeding but also exact position of bleeding instances [5,
28]. Therefore, automation of this manual procedure would save a lot of valuable time of the
doctors and patients waiting for the results of the diagnosis of the endoscopy recording. The
current technologies are efficient to traverse WCE images swiftly but still lack automatic
diagnosis capability with 100% accuracy. The capsule involved in WCE can be placed in a
child with weight as low as 10kg making it a better option for people of all ages. In spite of
its benefits, CE is neither a substitute for upper endoscopy nor for colonoscopy. The reason
is that CE is only a diagnostic technique and also, it is non-invasive so it cannot help in
biopsy.

The developing predominance of intestinal bleeding overall expands the quantity of cases
that must be surveyed by doctors. Furthermore, the cost involving the regular check ups and
examination are very high and absence of expert specialists keep many people away from
accepting a sufficient and effective medication. Algorithmic image classification of WCE
is an attempt to assist the analysis of huge image datasets with promising quality and lesser
expenses. Below is the literature survey which motivated this research.

3 Literature survey

Authors of this current research paper have also recently worked on explainable machine
learning model (based upon CNN) to classify in-vivo gastral images in [33]. It has the

Fig. 2 Row 1 shows bleeding samples and row 2 shows normal images of GI tract from public data in [5]
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capability to justify the test results in contrast to the features involved while highlighting
the segmented region of interest in the medical images. Explanable Artificial Intelligence
(XAI) provides the insight to a black box machine learning model to reason for the test
results derivation [2].

Review on the Applications of Deep Learning for Gastral images has been studied in [6].
Automatic bleeding zone detection using low complexity CNN Structure has been studied
in [12] and using multi-stage attention-Unet in [25]. Xing et al.[44] have generated a bleed-
ing detection algorithm of three stages. Pre-processing along with key frame extraction and
edge removal is computed in the first stage. The second stage is to differentiate the bleed-
ing frames using a novel superpixel-color histogram (SPCH) feature build on the principle
color spectrum and later the decision is made by a subspace KNN classifier. Lastly, seg-
mentation of the bleeding regions is done by extracting a 9-D color feature vector from the
multiple color spaces at the superpixel level. Jia et al.[16] present a technique for automatic
GI bleeding detection based on a deep CNN. Then performance is calculated by construct-
ing a big WCE dataset that contains nearly 10,000 annotated images for bleeding detection.
An eight-layer convolutional neural network that contain three convolutional layers, two
fully-connected layers, and three pooling layers are made. After that model is trained using
stochastic gradient descent having a batch size of 100 examples, learning rate, momentum,
and weight decay of 0.001, 0.9 and 0.004 respectively. The proposed method is lastly modi-
fied by replacing the second fully-connected layer with an SVM classifier and complete the
bleeding frame detection.

In [34], Probabilistic Neural Network (PNN) is used to extract features of the bleed-
ing region in WCE images distinguishing from the non-bleeding region. Bleeding detection
algorithm along with programming are implemented, and the results correctly recognize the
bleeding regions in WCE images and clearly mark them out with sensitivity and specificity
as 93.1% and 85.6% respectively. Sekuboyina et al. [42] propose a technique in which split-
ting the image into several patches and extracting features pertaining to each block using
CNN to automate the abnormality detection in WCE images. It increases their generality
while overcoming the drawbacks of manually crafted features. This paper results in sensi-
tivity, specificity as 71± 19% and 72± 3% respectively. In [13] Hajabdollahi et al. propose
a simple and efficient method for segmentation of the bleeding regions in WCE captured
images. Suitable colour channels are used and classified by MLP structure. They proposed
that quantized neural network without any multiplication could be considered as automatic
diagnostic approach inside the capsule. Ghosh et al. [9] trained CNN using SegNet layers
with three classes. Then endoscopy image is segmented using the training network and the
detected bleeding zones are marked. The best performance is achieved using the hue satu-
ration and value (HSV) color space among different color planes. Performance is evaluated
on a publicly available clinical dataset, and framework achieves 94.42% global accuracy.

A deep learning U-Net architecture was used to detect and segment red lesions in the
small bowel by Coelho et al. in [5]. This U-Net was evaluated in an annotated sequence
by using the Suspected Blood Indicator (SBI) tool and state of art techniques. U-net out-
performed its peers in both detection and lesion segmentation. Its lesion detection accuracy
outperformed the state-of-art methods by 1.78% in accuracy. Li et al [23] proposed a SVM
based approach that combines chrominance moments and uniform LBP as color texture
feature for bleeding detection on data collected from 10 patients. Further, Giritharan et al
[10] also proposed a SVM based approach for rebalancing the samples by oversampling
the minority class and undersampling the majority class and obtaied the accuracy of 90%.
In [26], transfer learning has been studied for GI bleeding diagnosis using pre-trained

Multimedia Tools and Applications (2020) 79:21941–21966 21947



V3 model on ImageNet dataset. Data re-sampling have been used to increase the positive
sample rate of the training sets for CNN.

Table 2 summarizes the comparison of recent techniques while listing their year, basic
approach, dataset, highlights and results obtained. The state-of-the-art techniques only focus
on the classification algorithms on static data without introducing any variations.

4 Proposedmethod

This sections explains the basic architecture of CNN model used followed by the proposed
CNN ensemble based on data augmentation and finally details the proposed model training.

4.1 CNN architecture layers

There are a variety to deep learning models available for CNN architecture. The architecture
of each CNN in the proposed ensemble has been inspired from [17, 41, 46] and modified
to tune the learning accuracy of the model on the underlying dataset. Similar to the CNN
model proposed by Jia et al. [16], each of the proposed CNN involved in the ensemble has
been comprised of eight-layers that involve three convolutional layers (C1-C3), two fully-
connected layers (FC1, FC2) and three pooling layers (MP1-MP3). Flow diagram for CNN
starting from input image, role of various layers and the final binary outcome has been
shown in Fig. 3. Table 3 contains the variable values of the layers used in CNN architecture.

4.2 Data augmentation

The proposed method uses dynamic data for CNN training using augmentation during input
phase. This augmentation involves generating copies of one image into multiple possibilities
of blur, luminance, noise and rotation variances of the image, for efficient and generalized
training. The reason of data augmentation is to increase the size of dataset for real time
application and avoid overfitting in case of deep learning according to [35, 40]. By utilising
blur, luminance, noise and rotation variances of the images, the labelled dataset size can be
increased. Labelled data is difficult and expensive to obtain from expert gastroenterologists
and also time consuming. It also involves patient’s private information and thus difficult to
acquire from hospitals.

For the proposed CNN ensemble, the data is augmented with four transformations and
five copies of each data image (4 × 5 = 20 copies per image). Afterwards, each of these
five copies are fed into each of the CNN and the aggregate result calculates the binary
classification of bleeding and normal image. Figure 4 shows original image, rotation, blur,
illuminance alteration, and noise into the original image. Details of each step is sequentially
represented in the following subsections. In order to reduce the variance error (in the bias
variance graph) for the CNN model, it is useful to consider various deformations in the
training data using data augmentations and use ensemble of CNN learning. Various data
versions would be infused into CNN ensemble for the aggregate decision. It will make the
model capable of dealing with such spectrum of degradation. The CNN ensemble would
help finding the generalized decision function thereafter.

While the wireless endoscopy camera captures the images in the small intestine, it might
take pictures with random arbitrary angles and distances. The images captured might be
blurry due to poor focusing of the camera or it might contain bubbles as shown in Fig. 2. Due
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Fig. 3 Flow diagram for individual CNNs involved in the proposed ensemble. The output layer goes into
aggregation function which is the majority voting for binary classification

to capsule movement, variations in the angles of image rotation (R), illuminance (L) condi-
tions, blurring (B), and noise (N) [24] are simulated. Again, the results might be affected by
illuminance conditions. The proposed algorithm should be able to deal with these types of
degraded images and the following transformations are considered for studying these degra-
dations which are also shown in Fig. 4. Figure 5 presents the block diagram of our proposed
ensemble for image classification. Each of the augmentation is randomly input into CNN
models. The ensemble learning helps to reduces the bias caused by individual classifiers for
the given set of parameters. Thus, ensemble is more generalised as compared to individual
classifiers. In [48], the review of various ensemble learning models and motivation has been
studied in detail. A similar ensemble setup has been studied in [30] for traffic surveillance
to classify vehicle types.

1. Rotation: Images have been rotated with {60◦, 120◦, 180◦, 240◦, 300◦} as 5 different
values of degrees by using nearest-neighbor interpolation.

2. Luminance change: To tune the luminance, the image is first converted from RGB to
YCbCr. A scalar L is chosen in a random and uniform manner in the interval of [0,
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Table 3 MATLAB value of variables and their names used in the CNN layers for training

Sr Variable value Variable name Description

1 ‘imageinput’ Image Input 100x100x3 images with ‘zerocenter’ normalization

2 ‘conv 1’ Convolution 8 3x3 convolutions with stride [1 1] and padding ‘same’

3 ‘batchnorm 1’ Batch Normalization Batch normalization

4 ‘relu 1’ ReLU Rectified Linear Unit

5 ‘maxpool 1’ Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

6 ‘conv 2’ Convolution 16 3x3 convolutions with stride [1 1] and padding ‘same’

7 ‘batchnorm 2’ Batch Normalization Batch normalization

8 ‘relu 2’ ReLU Rectified Linear Unit

9 ‘maxpool 2’ Max Pooling 2x2 max pooling with stride [2 2] and padding [0 0 0 0]

10 ‘conv 3’ Convolution 32 3x3 convolutions with stride [1 1] and padding ‘same’

11 ‘batchnorm 3’ Batch Normalization Batch normalization

12 ‘relu 3’ ReLU Rectified Linear Unit

13 ‘fc’ Fully Connected 2 fully connected layer

14 ‘softmax’ Softmax Softmax

15 ‘classoutput’ Classification Output crossentropyex - hyperparameter for loss function

16 ‘he’ He method Weights Initializer using He’s method [14]

1] and multiplying L with the Y channel. Thus, the modified image is converted back
to RGB. Five different variations of YCbCr versions of the image were obtained using
random variations in luminance (Y values). The random factors help to spread out the
luminance across whole value space possible.

3. Blurring: A circular-symmetric 2-D Gaussian kernel of wσw pixels and Standard devi-
ation σ is used for RGB components for image filtering. RGB components were blurred
using this kernel generating 5 versions of each frame with random w and σ values as
follows: (w, σ ) ∈ {(11, 9), (9, 7), (7, 5), (5, 3), (3, 1)}. The original and blurred ver-
sion is shown in Fig. 4 which illustrates that the details in the image are weakened by
using blurred operation.

4. Poisson Noise: The photon counter endoscopic camera introduces noise following
Poisson distribution [37]. The WCE images are being added a Poisson noise. Thus,
the output is generated for each pixel using Poisson distribution by computing mean
of pixel value. Five versions of noise variants have been generated using MATLAB
function imnoise as illustrated in Fig. 4.

Fig. 4 Various image augmentations of the original image for ensemble setup shown in Figure 5
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Fig. 5 Proposed flow of CNN ensemble (left to right). One image generates 4×5 = 20 copies by augmenting
rotation, illuminance, blur and noise assigned randomly to CNN models. Aggregate function is majority
voting for binary classification

Thus in total, 4 × 5 = 20 images have been generated for each image input and
introduced into 5 different CNN models in the ensemble framework. There are almost
60,000 images for a real capsule endoscopy video, but our public dataset [5] contains
only 3,895 images. Thus 20 fold augmentation helps to achieve the real data simulation
(3, 895 × 20 = 77, 900. Since only a small proportion of intestinal images contain , so aug-
mentation of the images is beneficial for robust model training and data enhancement [35].
In Fig. 5, {Ri, Li, Bi, Ni}5

i=1 signify various versions of rotation, luminance, blur and noise
as explain in above bullet points.

4.3 Training of proposedmethod

Fine tuning of the model is vital for achieving a premium quality performance in espe-
cially in case of medical image analysis. It is because health related decision are critical
and internal body images obtained are not often the best quality for automation. Parameter
tuning helps to mitigate the problems of over-fitting and speeding up the training process
as well [36]. CNN model have been trained and Table 3 highlights the CNN network layer
configuration used in training of proposed model. He’s method has been used for weights
initialization [14]. For back propagation in CNN, there are various optimizing algorithms
options available such as Stochastic Gradient Descent with Momentum (SGDM) solver
[3], Root Mean Square Propagation (RMSPROP) and, Adam Stochastic Gradient Descent
(ASGD). SGDM has been found to perform relatively better in the experiments. SGDM
optimizer specifications have been summarized in Table 4. The epochs were initially set to
20 but the similar accuracy was achieved after 4 epochs as depicted in Figs. 6 and 7. Hence,
the number of epochs were reduced to 4 gradually to increase the computation time.

5 Imagenet vs training from scratch

This section discusses about pre-training using ImageNet versus training from scratch for
the underlying medical dataset specifically related to endoscopy. Medical dataset has two
primitive attributes while working with deep learning: (a) data content is different from pre-
trained (Imagenet) model (b) smaller sample dataset. Capsule endoscopy dataset is quite
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Table 4 Auxiliary table for MATLAB CNN training options for SGDM optimizer

Sr Training Options of SGDM Properties

1 Momentum: 0.9

2 InitialLearnRate: 0.01

3 LearnRateScheduleSettings: [1 × 1 struct]

4 L2Regularization: 1.00E-04

5 GradientThresholdMethod: ‘l2norm’

6 GradientThreshold: Inf

7 MaxEpochs: 4*

8 MiniBatchSize: 128

9 Verbose: 0

10 VerboseFrequency: 50

11 ValidationData: [1 × 1 matlab. io. datastore. ImageDatastore]

12 ValidationFrequency: 3

13 ValidationPatience: Inf

14 Shuffle: ‘every-epoch’

15 CheckpointPath: ‘ ’

16 ExecutionEnvironment: ‘auto’

17 WorkerLoad: [ ]

18 OutputFcn: [ ]

18 Plots: ‘training-progress’

20 SequenceLength: ‘longest’

21 SequencePaddingValue: 0

*(Epochs were initially set to 20 but decremented to 4 gradually for the similar accuracy but faster computa-
tion as shown in Figs. 6 and 7). Validation Frequency means frequency of network validation in number of
iterations

Fig. 6 CNN accuracy curve for the public dataset
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Fig. 7 CNN loss curve for the public datset

different and obscure as compared to the available natural images in Imagenet. Therefore
primitive features contained in the first layer of pre-trained Imagenet model may not be use-
ful. Hence model training from scratch has found to work better in the underlying case study.
Moreover Fig. 8 shows the size of ImageNet files in MB which needs to be downloaded for
the pre-trained model (obtained from https://keras.io/applications/). Even by using the initial
parameters obtained through Imagenet model followed by updating the network parame-
ter results in same classification accuracy. To summarize below are the major aspects to be
considered before using transfer learning (such as Imagenet):

• If the trained dataset has enough labelled examples and nature of the dataset is quite
different from ImageNet then it is better to train CNN from scratch. ImageNet does not
have endoscopy medical dataset [29].

• The data distribution of underlying data should be similar to the pre-trained ImageNet
dataset. Otherwise training and testing will not be consistent.

Fig. 8 Top-1 and top-5 accuracy shows the validation performance of model on ImageNet data. Depth inclues
activation layers and batch normalization layers (obtained from https://keras.io/applications/)
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• If the labelled data is less than pre-trainined model (such as ResNet) which comprises
million parameters, it could result in overfitting [29]. Number of layers is one of the
hyper-parameter which is not easy to reduce in order to deal with overfitting. Moreover,
it is computationally expensive to figure out the layers and neurons which needs to be
eliminated for dealing with overfitting problem.

Thus, pre-trained networks can be used but one has to fine-tune the parameters, number
of layer/neurons making the results not better as compared to training from scratch. The
coverage time could be better for transfer learning but performance may not, since the data
distribution is different. In [19], a special transfer learning based upon modality-bridge has
been proposed which uses a special bridge database for the underlying medical imaging to
reduce the domain difference between nature images and medical images.

6 Experiments

This section contains discussion about public dataset, system configuration, minimum vari-
ance quantization for preprocessing, performance metrics, and results analysis on public
and real dataset.

6.1 Public dataset

Public dataset for small bowel lesion has been obtained from [5] containing two sets of
3, 295 + 600 = 3, 895 as shown in Table 5. The dataset also contains target labels of
bleeding/normal along with bleeding regions segmented manually which played a crucial
role in the performance analysis. These image samples are good representative of small
bowel situation including normal and bleeding cases. All the images have been re-sized to
256 × 256.

6.2 System configuration

The HP Pavilion X360 on the 64-bit Windows 10 operating system, having the Intel i5
processor has been used to run the experiments. HP Pavilion X360 graphics were produced
courtesy of the integrated Intel UHD 620 Graphics along with the NVDIA MX130. Latest
version of MATLAB R2018b has been used for programming the proposed method.

6.3 Minimum variance quantization

Quantization helps to reduce the color pallete in the underlying images to help focus on the
region of interest and faster computation. This algorithm begins with under sampling the
lattice of image pixels, use low-pass filter to blur the image to get the average colors present
in uniform sections and finally find the color clusters by using fast quantization methods

Table 5 Dataset description of
normal and bleeding examples
obtained from [5]

Data sets Normal Bleeding Total

Set 1 2,164 1,131 3,295

Set 2 161 439 600

Total 2,325 1,570 3,895
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Fig. 9 Color palette reduced to 24 by using minimum variance quantization for accuracy and complexity
balance

studied in [32]. The input layer of the CNN architecture fetches the images in RGB color
space after reduction in the color palette using minimum variance quantization. Number
of colors chosen to be 24 has resulted in good balance between the accuracy and compu-
tational complexity, also studied in [39]. Figure 9 illustrates the increased contrast of the
transformed crisp image. Color reduction helps in better image segmentation by simplifying
the obscure nature of internal body image which is originally red in color. It also enhances
the computational efficiency of the proposed model through this pre-processing.

6.4 Performancemetrics

The prominent metrics for comparative analysis have been used which include, accuracy,
sensitivity, specificity, precision, recall and F1-score. Their formulae have been given in the
Table 6.

6.5 Data analysis

Machine learning model selection along with its performance depends on the underlying
data distribution [18]. Therefore the data analysis is imperative before model design and
selection. Two experiments have been performed to study the data distribution of normal
and sick (bleeding) images (1) average red color (R) intensity comparison in sick versus
healthy images (2) RGB values analysis in healthy and sick images to see the dispersion and
separability of two classes in 2-d plots. For sake of clarity in the plots, less than 10% images

Table 6 Metric definitions
Metric Formula

Accuracy (tp+tn)/(tp+fp+fn+tn)

Sensitivity tp/(tp+fn)

Specificity tn/(tn+fp)

Precision (P) tp/(tp+fp)

Recall (R) tp/(tp+fn)

F1 2*R*P/(R+P)
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have been chosen randomly out of 3,895 images in the underlying public dataset obtained
from [5]).

In Fig. 10, the average red color in the sick and healthy classes has been sorted and plotted
for 120 images from each category. Although all gastral images are reddish brown in color,
but the sick images are more saturated with redness. In Fig. 11, various intensity plots of
300 images have been illustrated. These four figures show the following: (a) RGB intensity
distributions of 120 bleeding (sick) and 180 normal (healthy) images for comparison of
dispersion in red color. Red is more dispersed on the left half (sick class) which means
higher range of red values. Other three plots (b-d) show for all images, the R versus G; R
versus B and B versus G plots for these 120 sick + 180 healthy images. In (b-d) images
show that there is tremendous amount of overlap and a simple linear regression may not
be sufficient for the bleeding classification. Thus, there is a need for powerful non-linear
learning system (such as CNN) to discern among sick and healthy classes.

6.6 CNN parameters and optimizers

The output layer of the proposed model is a binary output, which is either bleeding or
normal. Hidden layers act as intermediate layers with the freedom to tune the parameters
to achieve best possible decision function for classification. The training cycle included 4
epochs to yield the required accuracy. Epochs were initially set to 20 but decremented to 4
gradually for the similar accuracy but faster computation during empirical analysis (Figs. 6
and 7). The validation frequency was set to 3 iterations with Infinite Patience and hardware
included single CPU with constant learning rate schedule and 0.01 learning rate. There are
three 2-D convolutional layers in the proposed network. The initial layers are relatively
basic to learn low level features while maturing up towards the end of the network. Layers
enlarge in the receptive field size capability to learn subtle features from left to right in
CNN. Figure 12 shows the outputs for convolution layers (1-3) and fully connected layer.
Figure 12 has been drawn using MATLAB function deepDreamImage to visualise network

Fig. 10 Sorted average red pixel intensities for 120 normal and sick images. The upper line is redness in sick
images which has relatively higher values compared to normal images
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Fig. 11 Only 300 images out of 3,895 (from public dataset [5]) has been chosen for clarity of illustration (a)
RGB intensity of 300 images (180:120 for healthy:sick cases) (b) Red vs Green average intensities (c) Red
vs Blue avg. intensities (d) Blue vs. Green intensities plotted of all 300 images. It is clear from (b-d) that
none of the colour intensities are easily separable for healthy and sick cases

features. It shows semantic learning prowess in subsequent CNN layers as the data goes
through. Refer Table (3) for variables for layers corresponding to entries {2, 6, 10, 13}. Thus
the network learns progressively about colors and edges at different angles for complex
features. It is clear from the Fig. (12) that by the end, the model is able to classify bleeding
versus normal frames due to their striking differences in the contrast after the transformation
through CNN layers.

Three optimizer options were tried for CNN ensemble (sgdm, adam and rmsprop) to
compare the performance of proposed model as shown in Table 7. It can be observed that
for better overall performance, sgdm (Stochastic Gradient Descent with Momentum) solver
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Fig. 12 CNN features from 3 convolution layers and fully connected layer

should be used for CNN, which is related to the works [3]. Thus sgdm optimizer is good
choice over rmsprop (Root Mean Square Propagation) and adam (Adam Stochastic Gradient
Descent) for this dataset to classify bleeding. Now, keeping the solver fixed to sgdm, the
dataset ratio in training phase has been varied by decreasing the normal images randomly
to make the data relatively balanced for binary classes (60:35, 60:40 and 50:50).

6.7 Results analysis for class ratios

Various data ratios of healthy and sick must be explored to analyse the performance due to
data distribution disparity (in healthy and sick classes) as studied in Section 6.5. All 3,895
images have been considered for training and testing, with random selection of 85:15 for
training:testing ratio. Afterwards, 10-trails average has been used to report the performance

Table 7 Effects in performance for variations in a training data ratios (healthy:sick) and b various optimizer
methods for proposed method

Optimizer Healthy:Sick Sen Spc P R F1 Acc

1 65:35 0.92 0.96 0.91 0.94 0.92 0.95

2 SGDM 60:40 0.94 0.94 0.92 0.92 0.92 0.94

3 50:50 0.95 0.92 0.90 0.95 0.92 0.93

4 65:35 0.88 0.94 0.90 0.89 0.89 0.92

5 ADAM 60:40 0.90 0.92 0.91 0.91 0.91 0.91

6 50:50 0.91 0.88 0.91 0.91 0.91 0.89

7 65:35 0.87 0.92 0.89 0.87 0.88 0.90

8 RMSPROP 60:40 0.90 0.91 0.88 0.89 0.88 0.91

9 50:50 0.91 0.88 0.92 0.89 0.90 0.89

Training:Testing ratio has been set to 85:15. Average of 10 trials have been reported

Bold entries try to emphasize on the proposed model results
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Fig. 13 SGDM optimizer in CNN ensemble gives better results with accuracy over various ratios of nor-
mal:bleeding instances. Best results were found with SGDM and 65:35 data ratios of healthy:sick images
during training

results. In the training phase, normal:bleeding class ratios has been altered (65:35, 60:40
and then 50:50) for each optimizer and performance has been recorded for analysis. The
sick examples were kept intact and normal image examples were decreased gradually. It has
been observed that by reducing the data for normal examples, the decision boundary gets
biased towards sick images resulting in higher sensitivity. On the other hand, specificity and
overall accuracy decreases as the data balances in class ratio by successive reductions. Thus
in the underlying case study, more instances with normal examples are beneficial for global
predictions for both sick and healthy.

Visual representation of the Table 7 has been plotted as Fig. 13. It clearly demonstrates
the victory of sgdm optimizer in CNN over various data ratios of normal and bleeding image
sets. Although the best sgdm results were obtained by using 65:35 ratio (for normal and
bleeding images). The results from proposed method have been compared with other state-
of-art algorithms as shown in Table 8. For consistent comparison, same dataset (of 3,895
images from [5]) has been used with 85:15 for train:test ratio and average over 10 trials.
It can be observed that proposed CNN model can achieve accuracy as high as 0.95 outper-
forming other modern methods. Also, an optimal split ratio for training the model depends
on underlying data distribution i.e. ratio of healthy to sick images. With consideration of
the system used for experimentation, data analysis results might be useful in the future for

Table 8 Performance comparison with state-of-art techniques (using public dataset [5] of 3,895 images) with
85:15 ratio of training:testing

Sr Method Accuracy

1 Statistical features and region growing [39] 0.87

2 Computerized method[7] 0.91

3 SVM [43] 0.93

4 MST and SVM[45] 0.93

5 Suspected Blood Indicator tool (SBI) [27] 0.73

6 U-Net [5] 0.94

7 SegNet [9] 0.93

8 Proposed CNN framework 0.95

Average of 10 trials have been recorded

Bold entries try to emphasize on the proposed model results
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researchers to improve their model. Thus CNN ensemble strives to find out the best possible
combination of attributes required to classify bleeding symptoms in CE images after setting
up the layer options, SGDM optimizer and color palette reduction using minimum variance
quantization technique.

6.8 Real dataset

Real endoscopy dataset have been obtained from a known gastroenterologist with manual
annotation of the binary labels (normal or bleeding). We considered a subset of this endo-
scopic video for testing, stretching up to 42 minutes which included significant bleeding
frames. The video to image conversion has been done using MATLAB using function read-
Frame with the rate of 2 frames per second. It yielded 5,000 images (normal:bleeding ratio
is 4000:1000). Sample frames from the real dataset video has been shown in the Fig. 14.
The previous trained model on the public dataset [5] with augmentations has been used to
test this real world video dataset. Training rules were defined in Tables 3, 4, 5. Prior to
the testing real dataset on the proposed algorithm, basic pre-processing has been performed
such as (a) histogram equalization for contrast enhancement (b) image resizing to match the
training images (c) color palette reduction using minimum variance quantization. Proposed
ensemble was able to achieve 0.93 and 0.91 accuracy with and without preprocessing on the
real video dataset while outperforming state-of-art algorithms.

Fig. 14 Bleeding classification on the real dataset endoscopy video
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Thus convolutional neural networks ensemble made from data augmentation with min-
imum variance quantization with a specific setting of layers and optimizer makes it well
suitable for building highly dependable image classification system for internal organ
images.

7 Conclusion

This paper has defined a CNN augmented ensemble architecture to diagnose bleeding symp-
toms from Capsule Endoscopy (CE) images. Data distribution and RGB pixel intensities has
been studied in detail to demonstrate the complexity of the classification problem. Copies
of the image data have been generated using synthetic augmentation by introducing rota-
tion, blur, illuminance and noise. Afterwards, Color palette reduction has been used using
minimum variance quantization, studied in [32] to get 24 colors in the image for optimal
balance of accuracy and time-space complexity. The experimental analysis of the proposed
technique has been performed on both the public and real dataset and compared with other
state-of-art methods.

The limitation of the proposed technique is that if images quality is poor, then the detec-
tion accuracy might degrade. So the assumption is a good quality image dataset for training
and testing. Image size should also be optimized to balance the trade off with meta-heuristic
performance accuracy and computational time on the underlying machine. For high vol-
ume video data processing, GPU workstation is also required which might be expensive.
Nevertheless, the proposed CNN ensemble is well suitable for building highly dependable
image classification system for any similar type of image classification application. Future
plan is to incorporate longer and obscure videos for model training and design automatic
video annotation and segmentation system by utilizing cross-modal features of image and
collateral text obtained from expert gastroenterologists.
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