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a b s t r a c t

This paper proposes a new approach for designing stable hybrid L1 adaptive controller employing
lbest topological model of harmony search (HS) algorithm. The proposed design approach guarantees
desired stability and simultaneously provides satisfactory tracking performance for a class of non-linear
systems. The design methodology for the controller utilizes the meta-heuristic global search feature of
HS algorithm and the local search phenomenon of L1 adaptive control strategy in tandem. The paper
also analytically describes the superiority of lbest topological model compared to the conventional
HS algorithm in terms of convergence phenomenon, when hybridized with L1 adaptive control. The
proposed hybrid control methodology has been implemented for benchmark simulation case studies
and real-time experimentation to demonstrate its usefulness.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Designing control strategies for non-linear systems are draw-
ing much attention to the researchers over last few decades.
There are several theoretical and practical ways like feedback lin-
earization, gain scheduling which had been utilized and success-
fully employed to tackle nonlinearity in many applications [1].
But, in such cases, at the time of linearization of the system,
some information will fly away and high variation of uncer-
tainties cannot be mitigated by these types of controllers. Back-
stepping, gain scheduling, self-tuning regulators etc. are also ex-
tensively employed for designing the adaptive controllers [2,3].
In recent years, a number of promising adaptive control schemes
are proposed and experimentally verified with different types
of non-linear systems. A decentralized adaptive control scheme
is proposed for a class of interconnected nonlinear systems [2]
without requiring any a priori knowledge for the control di-
rections of its subsystems. Here, Nussbaum gain is employed
which produces high overshoot, chattering problem and poor
dynamic performance. To mitigate the chattering problem during
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the operation of the nonlinear systems, adaptive back-stepping
control strategy with hysteretic quantizer is utilized in [3]. To
overcome the drawbacks of the direct adaptive control, as utilized
in [2] and [3], a conjuncture of the input to state stable (ISS)
feedback and the model-free extremum seeking (ES) algorithm
based indirect adaptive control scheme was proposed in [4] for
the nonlinear systems with time-varying parametric uncertain-
ties. For the nonlinear systems with unknown actuator delay,
prediction based delay adaptive control scheme has been pro-
posed in [5]. These controllers provide unsatisfactory transient
responses to reduce instability of the system. Other than the
classical approaches, intelligent control schemes such as fuzzy
logic [6,7], neural network [8,9] etc. are also utilized for different
classes of non-linear systems. Though increase in time complexity
due to the training process of the controller and/ or network is
the main disadvantage of these cases. Model reference adaptive
control (MRAC) is another popular adaptive control scheme for
non-linear systems. However MRAC is very much dependent on
system initial conditions and the reference signals.

To avoid those problems, L1 adaptive controller [10,11] is
introduced to take care of uncertainty in system parameters
and external disturbances without sacrificing the stable tran-
sient performance. Here, perfect cancellation of uncertainties and
disturbances are achieved by keeping the control signal within
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the control channel bandwidth and it is independent of initial
condition and references. The L1 adaptive control strategy utilizes
a state predictor of the original non-linear system, high gain
adaptation rules and a filter to achieve satisfactory transient
performance as well as high robustness. It thus guarantees the
robust transient performance along with fast adaptation to the
system with uncertainties and disturbances. In recent past, L1
adaptive control strategy finds applications in many fields like
aircraft control [12,13], maximum power point tracking in small
wind energy conversion system [14], pico-scale satellite test bed
system [15], healthcare [16] etc. Despite of being advantageous,
the conventional L1 adaptive control strategy has some distinctive
disadvantages. The designer should employ a judicious trade-
off between the robust performance and fast adaptation during
the design process [10,11]. It also requires a priori knowledge
of controller parameters and the design does not guarantee the
optimal/near optimal solution [10,11]. Although, the adaptation
gains for different parameters of design process are same, their
influences on the control law are different. It sometime produces
unnecessary high values of design variables and in turn, high
filter gain to obtain a physically realizable control law. Moreover,
the free parameters of L1 adaptive control scheme are selected
manually in a trivial manner. This may cause substantial erro-
neous controller design when the external disturbances are large
enough.

In this work, L1 adaptive control architecture and a meta-
heuristic optimization, namely harmony search (HS) algorithm,
are hybridized in a concurrent manner to utilize the advantages
of L1 adaptive control scheme, and at the same time avoiding
its drawbacks. The novelty of this proposed scheme is that, it
does not require any a priori knowledge about the system to
be controlled. Here, the manual tuning of design parameters are
replaced by the optimal/near optimal solution by the utilization
of HS algorithm. The adaptation gains are chosen as different
values for different adaptable parameters depending on their
relative importance. The operating principle of the proposed work
is that, the L1 adaptive control framework is first tuned in an
offline manner to get the adaptation laws for unknown constant,
uncertainties and disturbances present in the system utilizing the
predictor output. Then, the tuned controller is employed online
to control the system. Thus, the predictor will not come into play
during the online operation, when the performance of the tuned
controller is evaluated. So in a nutshell, this paper proposes a
tuning methodology for the L1 adaptive control framework with
optimization technique.

The essential characteristic of a good optimization technique is
its balance in exploration and exploitation of candidate solutions
during the search process. The basic HS algorithm, proposed by
Z. W. Geem [17], suffers from the exploration point of view
although it shows very good exploitation phenomenon in dif-
ferent applications [18,19]. An improved group improvisation
based HS algorithm, basically a local best (lbest) model of HS
algorithm, proposed by Das Sharma [20], poses a good balance
between exploration and exploitation due to its intense har-
mony improvisation technique. In this paper, the exploration and
exploitation capability of lbest HS algorithm has been mathemat-
ically analysed, to show its better convergence than its conven-
tional counterpart. Moreover, the stability analysis of the control
scheme along with the meta-heuristic optimization technique
has been performed explicitly. The Lyapunov stability theory
for an adaptive controller and the spectral radius convergence
of a meta-heuristic optimization technique are put together to
analyse the stability of the proposed lbest HS based optimal L1
adaptive controller.

Thus, the main contributions of the proposed methodology
pointed out as:

• Concurrent mode of hybridization of meta-heuristic opti-
mization technique with the L1 adaptive control structure
for process automation.

• Choice of L1 adaption gains according to the merit of the
adaptable parameters.

• The guaranteed stability of the proposed design with the
superior convergence performance of lbest HS algorithm
based L1 adaptive controller.

The proposed hybrid L1 adaptive control scheme is compared
with lbest HS based control scheme without L1 adaptive con-
troller, classical L1 adaptive control scheme [10,11,21], PID aug-
mented L1 adaptive controller [22], fuzzy feedback filter L1 adap-
tive controller [23], basic HS algorithm based hybrid design and
particle swarm optimization (PSO) based hybrid design. The re-
sults obtained from the simulation case studies and an extensive
hardware case study show that the proposed lbest HS algorithm
based hybrid L1 adaptive control scheme outperforms the other
competing design techniques, as mentioned above.

This paper is organized as follows. Description of L1 adaptive
controller with its stability proof is given in Section 2. Section 3
details the stochastically optimized hybrid L1 adaptive controller
design. Simulation and experimental case studies are given in
Section 4. Section 5 concludes the paper with further research
directions.

2. Problem formulation and L1 controller design

Conventional adaptive controllers are mainly used for the sys-
tems with small uncertainties and in general, are having unsat-
isfactory transient performance. Controller setting is very much
dependent upon the system initial states, reference inputs and
sometime it leads to instability of the system [10]. For highly non-
linear system and with uncertainties, large enough, conventional
adaptive controller fails to stabilize the system. In addition, these
controllers produce high frequency control signal, large transient
errors and also cannot deal with time varying systems. A new
variant of adaptive control strategy, namely L1 adaptive controller
is computationally fast and robust in adaptation [10,11]. It can
also handle large time varying uncertainties even during transient
period.

As shown in Fig. 1, a typical L1 adaptive controller comprises of
mainly three parts viz. state predictor, controller and adaptation
law. The predictor produces similar output as system and it
predicts the uncertainties present in the system. Adaptation law
adapts that uncertainties and control law produces control signal
for both system and its predictor. System input is given through
a low pass filter where the higher order frequencies are filtered
out.

2.1. Problem formulation

Let us consider the dynamics of a single input single output
(SISO) system as:

ẋ(t) = Amx(t) + b(ωu(t) + θ T (t)x(t) + σ (t)), x(0) = x0 (1)

y(t) = cT x(t) (2)

where, x(t) ∈ ℜ
n is the state vector, u(t) ∈ ℜ is the input to

the system, y(t) ∈ ℜ is the controlled output, b ∈ ℜ
n×1 and c ∈

ℜ
1×n are known constants vector, Am ∈ ℜ

n×n is system matrix,
Hurwitz in nature.ω ∈ ℜ is unknown constant related to system,
θ (t) ∈ ℜ

n is parameter uncertainty vector and σ (t) ∈ ℜ is time
varying disturbance of the system model. These ω, θ (t) and σ (t)
are bounded by compact convex sets Ω ∈ ℜ, Θ ∈ ℜ

n, and Σ ∈

ℜ respectively ∀t ≥ 0. Now, the objective is to design a robust
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Fig. 1. Architecture of L1 adaptive controller.

controller that can give a bounded control signal such that the
system output can properly track reference signal r(t), both in
transient and steady state period keeping all other error signals
bounded.
Predictor design: Now, in the L1 adaptive control configuration
a predictor is employed to estimate the system states with the
help of the adaptive estimates of the modelled uncertainties and
disturbances. The state predictor model is considered as [21,24]:

˙̂x(t) = Amx̂(t) + b(ω̂(t)u(t) + θ̂
T
(t)x(t) + σ̂ (t)) (3)

where, x̂(t) ∈ ℜ
n is the state estimation. ω̂(t) ∈ ℜ, θ̂ (t) ∈ ℜ

n,
and σ̂ (t) ∈ ℜ are the adaptive estimates of unknown parameter,
uncertainties and disturbances present in the system respectively.
The error between the system state and predictor state i.e. x̃(t) =

x̂(t) − x(t) is utilized to formulate the adaptation laws, given as
follows:

˙̂ω(t) = Γ1Proj(ω̂(t), −̃xT (t)Pb u(t)) (4)
˙̂
θ (t) = Γ2Proj(θ̂ (t),−x(t )̃xT (t)Pb) (5)
˙̂σ (t) = Γ3Proj(σ̂ (t), −̃xT (t)Pb) (6)

where, P is the solution of the algebraic Lyapunov equation of the
system given by Am

TP+PAm = −Q , where Q is an arbitrary sym-
metric matrix satisfying Q = Q T > 0. Γ = [Γ1Γ2Γ3] > 0 is the
adaption gain vector with different adaptive gain components.
Proj (·, ·) denotes the Pomet–Praly projection operator [25].

The adaptation laws given in (4)–(6) are obtained from the
condition to minimize the state error between system state and
predictor state i.e. x̃(t) = x̂(t) − x(t) by solving the Lyapunov
stability criterion.

Let, the Lyapunov candidate function is as follows:

v =
1
2
x̃T (t)P̃x(t) +

1
2
ω̃T (t)Γ1

−1ω̃(t) +
1
2
θ̃
T (t)Γ2

−1̃θ (t)

+
1
2
σ̃ T (t)Γ3

−1σ̃ (t) (7)

where, ω̃(t) = ω̂(t) − ω is the error due to system modelling,
θ̃ (t) = θ̂ (t) − θ (t) is the error vector due to parameter uncer-
tainty and σ̃ (t) = σ̂ (t) − σ (t) is the error due to modelling of
disturbances in the system.

The dynamics of the state error between system state and
predictor state is given as follows:

˙̃x(t) = Am̃x(t) + b
[
ω̃(t)u(t) + θ̃

T (t)x(t) + σ̃ (t)
]

(8)

Taking the time derivative of (7) it can be written:

v̇ =
1
2

˙̃x
T
(t)P̃x(t) +

1
2
x̃T (t)P ˙̃x(t) +

1
2

˙̃ω
T
(t)Γ1

−1ω̃(t)

+
1
2
ω̃T (t)Γ1

−1 ˙̃ω(t) +
1
2

˙̃θ
T
(t)Γ2

−1̃θ (t)

+
1
2 θ̃

T (t)Γ2
−1 ˙̃θ (t) +

1
2
˙̃σ
T
(t)Γ3

−1σ̃ (t) +
1
2
σ̃ T (t)Γ3

−1 ˙̃σ (t)

(9)

Now, as ω, θ (t), and σ (t) are bounded within a compact set of
prescribed minimum and maximum values as [ωmin , ωmax] ∈ Ω

[θmin , θmax] ∈ Θ and [σmin , σmax] ∈ Σ[σmin , σmax] ∈ Σ , where,
ωmin , θmin , σmin are the minimum and ωmax , θmax , σmax are the
maximum values of ω, θ (t) and σ (t) respectively. Therefore, the
following upper bounds hold:
ω̂(t) − ω ≤ ω̂(t) − ωmin, or, ˙̃ω(t) ≤ ˙̂ω(t). Similarly, ˙̃θ (t) ≤

˙̂
θ (t)

and ˙̃σ (t) ≤ ˙̂σ (t). Putting these bounds and value from (8) in (9),
the upper bound of v̇ becomes [21],

v̇ ≤
1
2
x̃T (t)Am

T P̃x(t) +
1
2

[
ω̃(t)u(t) + θ̃

T (t)x(t) + σ̃ (t)
]T

bT P̃x(t)

+
1
2
x̃T (t)PAm̃x(t) +

1
2
x̃T (t)Pb

[
ω̃(t)u(t) + θ̃

T (t)x(t) + σ̃ (t)
]

+ω̃T (t)Γ1
−1 ˙̂ω(t) + θ̃

T (t)Γ2
−1 ˙̂
θ (t) + σ̃ T (t)Γ3

−1 ˙̂σ (t)

(10)

or,

v̇ ≤
1
2

[̃
xT (t)Am

T P̃x(t) + x̃T (t)PAm̃x(t)
]

+
1
2

[
ω̃(t)u(t) + θ̃

T (t)x(t) + σ̃ (t)
]T

bT P̃x(t)

+
1
2
x̃T (t)Pb

[
ω̃(t)u(t) + θ̃

T (t)x(t) + σ̃ (t)
]

+ ω̃T (t)Γ1
−1 ˙̂ω(t)

+θ̃
T (t)Γ2

−1 ˙̂
θ (t) + σ̃ T (t)Γ3

−1 ˙̂σ (t)

or,

v̇ ≤
1
2
x̃T (t)

[
Am

TP + PAm
]
x̃(t)

+
1
2

[
ω̃(t)u(t) + θ̃

T (t)x(t) + σ̃ (t)
]T

bT P̃x(t)

+
1
2
x̃T (t)Pb

[
ω̃(t)u(t) + θ̃

T (t)x(t) + σ̃ (t)
]

+ω̃T (t)Γ1
−1 ˙̂ω(t) + θ̃

T (t)Γ2
−1 ˙̂
θ (t) + σ̃ T (t)Γ3

−1 ˙̂σ (t)

(11)
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As, Am
TP + PAm = −Q and x̃T (t)Pb = bT P̃x(t), thus,

v̇ ≤ −
1
2
x̃T (t)Q x̃(t) +

[̃
xT (t)Pbω̃(t)u(t) + ω̃T (t)Γ1

−1 ˙̂ω(t)
]

+

[̃
xT (t)Pb̃θ T (t)x(t) + θ̃

T (t)Γ2
−1 ˙̂
θ (t)

]
+

[̃
xT (t)Pbσ̃ + σ̃ T (t)Γ3

−1 ˙̂σ (t)
] (12)

Now, to ensure the stability of the closed-loop system in the sense
of Lyapunov, it should have,

v̇ ≤ −
1
2
x̃T (t)Q x̃(t) ≤ 0 (13)

Thus, to achieve the inequality in (13) the following conditions
should hold:
˙̂ω(t) = −Γ1̃xT (t)Pb u(t)

˙̂
θ (t) = −Γ2̃xT (t)Pbx(t)

˙̂σ (t) = −Γ3̃xT (t)Pb

Hence, the closed-loop stability of the system is guaranteed,
even with the presence of uncertainties and disturbances.

Now, to ensure the boundedness of the adaptable variables,
projection operator is used and the adaptation laws (4)–(6) are
obtained, where, the Pomet–Praly projection operator is defined
as [25]:

Proj(α, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y −

∇f (α)(∇f (α))T

∥∇f (α)∥2 yf (α),

if f (α) > 0 and yT∇f (α) > 0

y, otherwise

(14)

Remark 1. The rates of adaptation of unknown constant, time
varying uncertainties and time varying disturbances are cho-
sen differently depending on their requirement to stabilize the
system.

Remark 2. The projection bounds for unknown constant, time
varying uncertainties and time varying disturbances are so chosen
that the control signal reside within the actuator saturation limit.
The design process chooses the L1 adaptive control parameters in
such a way that, the designed controller provides optimal/ near
optimal performance with bounded control signal.

Remark 2 further infers that a constrained optimization
scheme is required to implement the design criteria during the
experimental study.
Control law: The L1 adaptive control law is generated as fol-
lows [21,22]:

u(s) = −kC(s)
[
η̂(s) − kg r(s)

]
(15)

where, η̂(s) is the Laplace transform of

η̂(t) = θ̂
T
(t)x(t) + σ̂ (t) + ω̂(t)u(t) (16)

k is a positive feedback gain, kg is the feed-forward pre-filter gain
to r(t) and r(s) is Laplace transform of r(t). D(s) must be chosen
such that C(s) =

ρD(s)
1+ρD(s) is a strictly proper and stable transfer

function, with low-pass filter gain C(0) = 1 and cut-off frequency
ρ. A simple choice for getting a low pass filter is D(s) =

1
s .

Low pass filter ensures the rejection of uncertainties within the
bandwidth of the control channel as well as high frequencies
introduced due to the high adaptation rate. Inclusion of low pass
filter in control signal decouples the adaptation and robustness

properties of the system [24,26–30]. The advantage of this L1
adaptive controller in comparison with MRAC is the inclusion
of this filtering technique that permits guaranteed satisfactory
transient performance for systems output.

Now, Let, H(s) is a strictly proper stable transfer function such
as H(s) = (sI − Am)

−1 b.
For L1 adaptive controller a state predictor of a strictly proper

stable system containing unknown constant, time varying distur-
bances and time varying uncertainties can be viewed as a low
pass system. Taking the Laplace transform of predictor equation
(3) becomes,

x̂(s) = H(s)(C(s) − 1)η̂(s) + H(s)C(s)kg r(s)

or,

x̂(s) = G(s)η̂(s) + G(s)r(s), (17)

G(s) = H(s)(C(s) − 1) (18)

G(s) = kgH(s)C(s) (19)

Eqs. (18) and (19) represent the predictor and plant model re-
spectively.

Here, the system will have the filtered output and rest of
the high frequency signal will be delivered to the predictor
model [10].
State boundedness: Let, λmin(P) be the minimum Eigenvalue of
P. Then the following upper bound

λmin(P)
̃x(t)2 ≤ x̃T (t)P̃x(t) ≤ v(t) ≤ v(0),∀t ≥ 0 (20)

holds which implies that,̃x(t)2 ≤ v(0)/λmin(P),∀t ≥ 0 (21)

where, v(t) is appropriate Lyapunov function.
L∞ norm defines that,̃x(t)L∞ = max

i=1,2,...,n,t≥0
|̃xi(t)| (22)

Using (22) in (21) ensures that,

max
i=1,2,...,n,t≥0

|̃xi(t)| ≤

√
v(0)/λmin(P),∀t ≥ 0 (23)

Therefore, ∀t > 0,̃x(t)L∞ ≤

√
v(0)/λmin(P) (24)

From triangular relationship for norms gives:⏐⏐x̂(t)L∞ −
x(t)L∞⏐⏐ ≤

√
v(0)/λmin(P) (25)

Again from projection algorithm it follows that,

ω̂(t) ∈ Ω, θ̂ (t) ∈ Θ, σ̂ (t) ∈ Σ; ∀t ≥ 0 (26)

As all the adaptation parameters are bounded, therefore, from the
definition of η̂(t) in (16), we have,η̂(t)L∞ ≤ ωmax ∥u(t)∥L∞ + θmax

x(t)L∞ + σmax (27)

where, ωmax = maxω∈Ω ω, θmax = maxθ∈Θ
∑n

i=1 |θi|, θi is the ith
element of θ and σmax = maxσ∈Σ σ . Substituting ∥xi∥L∞ value
from Eq. (25) in Eq. (27) gives,η̂(t)L∞ ≤ ωmax ∥u(t)∥L∞+θmax

(x̂(t)L∞ +

√
v(0)/λmin(P)

)
+σmax

(28)

Now, from Eq. (17) and L∞ norm condition,x̂(t)L∞ ≤
G(s)L1 η̂(t)L∞ + ∥G(s)∥L1 ∥r(t)∥L∞ (29)
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Putting the value of
η̂(t)L∞ from (28) in (29) yields that,x̂(t)L∞ ≤

G(s)L1 ωmax ∥u(t)∥L∞

+
G(s)L1 θmax

(x̂(t)L∞ +
√
v(0)/λmin(P)

)
+
G(s)L1 σmax + ∥G(s)∥L1 ∥r(t)∥L∞

(30)

Let,

λ =
G(s)L1 θmax (31)

From L1 gain requirement k, kg, C(s) are designed to satisfyG(s)L1 θmax < 1.
Therefore, the relationship in (30) can be modified as:

(1 − λ)
x̂(t)L∞ ≤

G(s)L1 ωmax ∥u(t)∥L∞ + λ
√
v(0)/λmin(P)

+
G(s)L1 σmax + ∥G(s)∥L1 ∥r(t)∥L∞

or,

x̂(t)L∞ ≤

G(s)L1 ωmax ∥u(t)∥L∞ + λ

√
v(0)

λmin(P)

+
G(s)L1 σmax + ∥G(s)∥L1 ∥r(t)∥L∞

(1 − λ)
(32)

Since, v(0), λmin(P),
G(s)L1, ∥G(s)∥L1, ∥r(t)∥L∞, λ, ∥u(t)∥L∞,

ωmax, σmax all are finite, and λ < 1, this equation implies thatx̂(t)L∞ is finite for any t > 0, hence x̂(t) is bounded.
The relationship in (25) states that

x(t)L∞ is also finite ∀t >
0, and therefore x(t) is bounded.

Therefore, if the unknown constant, time varying uncertain-
ties and disturbances related to the system are present simul-
taneously, then, the satisfactory transient performance as well
as overall stability of the L1 adaptive controller are guaranteed
precisely.

Now using (13), as Q is positive definite, therefore v̇ is nega-
tive semi definite, i.e. v

(̃
x(t), ω̂(t), θ̂ (t), σ̂ (t)

)
≤

v

(̃
x(0), ω̂(0), θ̂ (0), σ̂ (0)

)
impose that x̃T (t)Pb , ω̂(t), θ̂ (t), σ̂ (t) are

bounded. Let, Ψ =
1
2 x̃

T (t)Q x̃(t) ≤ −v̇ and taking integration of it
with respect to time t gives:

∫ t
0 Ψ (τ )dτ ≤ v(̃

x(0), ω̂(0), θ̂ (0), σ̂ (0)
)

− v

(̃
x(t), ω̂(t), θ̂ (t), σ̂ (t)

)
As, v

(̃
x(0), ω̂(0), θ̂ (0), σ̂ (0)

)
is bounded and

v

(̃
x(t), ω̂(t), θ̂ (t), σ̂ (t)

)
is non-increasing and bounded, therefore

it follows that, limt→∞

∫ t
0 Ψ (τ )dτ < ∞ and Ψ̇ (t) is also bounded.

By using Barbalat’s lemma we get, limt→∞ Ψ (t) = 0 which
implying that limt→∞

⏐⏐̃x⏐⏐ = 0. Thus, x̃(t) is bounded.

3. Main results

3.1. Stochastically optimized hybrid L1 adaptive controller

It is a very challenging task to properly tune the parameter
values of L1 adaptive controller, as its high adaptive gains lead the
system to the verge of instability. During the controller design,
L1 norm condition provides the ranges of the parameter values
which does not guaranteed optimal performance of the con-
troller. Thus, the present work utilizes a stochastic optimization
technique, such as, harmony search (HS) algorithm to design
optimal L1 adaptive control law to acquire high adaptability with
guaranteed stability. HS is employed here due to its low compu-
tational cost and robust exploration and exploitation capability.
The performance and reliability of L1 adaptive controller has been
improved with this design methodology.

3.2. Harmony search algorithm

Solution of an optimization problem found by a heuristic algo-
rithm is mainly based on trial and error method. Therefore, there
is no guarantee of the best or optimal solution. Meta-heuristic al-
gorithm is considered as higher level technique which comprises
of lower level technique as well as exploration and exploitation
of huge search spaces [31–33]. This can be compared with a
musical orchestra where, at the composition period musicians
play different combinations of musical pitches randomly. At the
practice period they play some music pitches either from their
memory or completely new one. When they consider musical
pitches from memory then they may adjust or fine tune those
pitches to get more correct melody. In this improvisation process
their aim is to play a wonderful harmony altogether. Inspired
by this phenomenon at first the size of harmony memory (HM)
matrix is considered. Each pitch of a harmony played by different
musicians is a candidate in the candidate solution vector placed
at each row of HM. One extra column is added in each row that
stores the fitness value of each harmony. To generate a new
harmony, musicians can choose any of these three processes,
(1) may directly take some pitches from the memory, and sub-
sequently, fine tuning of those pitches may be done, (2) can
play randomly a new pitch within the range without retrieving
from the memory. For first case harmony memory considering
rate (HMCR), pitch adjust rate (PAR) and its bandwidth (bw) are
required. Depending upon fitness values, harmonies are sorted
in ascending/ descending order depending on the minimization/
maximization problem. If the fitness value of the newly generated
harmony is better than that of the worst harmony in the memory,
then it will replace the worst harmony. If maximum number of
iteration is reached or, a specific error criteria is satisfied then,
the process will be stopped and the best harmony of the harmony
memory matrix will be the optimal solution.

3.3. Variants of harmony search algorithm

Different types of variations are also proposed in basic HS al-
gorithm by many researchers [18,32–34]. The basic HS algorithm
utilizes fixed values for each of HMCR, PAR and bw. These three
significant parameters are very critical in fine-tuning the opti-
mized candidate solution vectors and can be potentially useful
in regulating the convergence rate of the algorithm to accomplish
the optimal solution. An improvement of the basic HS algorithm is
proposed in [19], where HMCR and PAR parameters are increased
linearly from a minimum value to a maximum value and bw is
kept constant throughout harmony improvisations. The physical
implication of this variant is that, as the generation of harmony
improvisation increases, the harmony memory would be rich in
experience. The PAR parameter is also increased because the fine
tuning is required as the optimization algorithm relies more on
the past values of the harmonies stored in the memory [19].
Along with this modification of basic HS algorithm, the entire
harmony memory had also been improvised [20]. These control
parameter variation of HS algorithm to improve the performance
and convergence rate of the optimization process are guided by
the notional approach of improvising musical instruments in a
rehearsal or in concert performance.

Furthermore, along with the earlier modifications in HS algo-
rithm, another parameter, viz. group memory considering rate
(GMCR) was introduced in [20]. In this variant of HS algorithm,
the concept of local neighbourhood topology was introduced
where the harmony memory is divided into number of groups
and the member harmonies of each group is selected in each
iteration. Each harmony belonging to a particular group is im-
provised either from its own group or from the others according
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Fig. 2. Flowchart representation of lbest HS algorithm.

Fig. 3(a). Flowchart for number of group selection.

to the value of GMCR ∈ (0, 1). The harmony members in each
group are reorganized in each iteration, so a more stochastic
exploration of the search space could be possible in this lbest
variant of HS algorithm. The dynamics of harmony improvisation
increases the tendency of achieving the global optimum [20].
This notion of harmony improvisation is conceptualized from the
mutual cooperation of different music groups and their combined
performance in a philharmonic orchestra. In this work, the basic
HS algorithm and this variant have been separately utilized to
optimize the L1 adaptive controller parameters and a compara-
tive study is presented. Fig. 1 describes the lbest version of HS
algorithm, termed as LBHS in this paper. The flowchart 1, given
in Fig. 2, consists of three more sub-flowcharts, given in Fig. 3.

The number of group selection, harmony selection into groups
and update of the harmony, in flowchart 1(Fig. 2) are described
by sub-flowcharts, given in Fig. 3(a)–Fig. 3(c).

3.4. Hybrid L1 adaptive controller

In this hybrid L1 adaptive controller design process, the Lya-
punov theory based L1 adaptive approach and the lbest version
of HS algorithm, namely LBHS, run concurrently to optimize the
(i) feedback gain (k), (ii) feed-forward gain of the pre-filter (kg ),
(iii) cut-off frequency of the low-pass pre-filter (ρ), (iv) adap-
tation gain vector (Γ ), (v) unknown constant related to system

Fig. 3(b). Flowchart for harmony selection into groups.

(ω), (vi) parameter uncertainty vector (θ ) and (vii) time varying
disturbance of the system model (σ ).

In this method, a harmony vector Z can be formed as [32]:

Z = [k|kg |ρ|Γ |ω|θ |σ ] (33)

The harmony vector Z contains all the required information
to construct a L1 adaptive controller. Here, the adaptation gain
vector (Γ ) can viewed as Γ = [Γ1|Γ2|Γ3], where Γ1, Γ2 and Γ3
are the adaptation gains or learning rates of ω, θ and σ adaptation
respectively. In proposed concurrent hybrid strategy, some of
the parameters of the harmony are static and some are varying
dynamically in each iteration during the optimization process.
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Fig. 3(c). Flowchart for update of harmony.

Thus, the harmony vector Z can be split into two parts as:

Z = [ψ |µ] (34)

where,

Static part : ψ = [feedback gain (k) | feed-forward

gain of the pre-filter (kg ) | . . .

| cut-off frequency of the low-pass pre-filter (ρ) |

adaptation gain vector (Γ )] (35)

Dynamic part : µ = [unknown constant related

to system (ω) | parameter . . .
uncertainty vector (θ ) | time varying disturbance

of the system model (σ )] (36)

The partition of harmony vector Z splits the parameters in
such a manner that µ has adaptive effect and ψ has non-adaptive
effect on u(s) respectively [20,34]. In L1 adaptive control scheme,
the values of the free parameters in the vector ψ are defined
a priori and the value of the corresponding µ minimizing the
tracking error can be obtained by the adaptation laws as in (4),
(5) and (6) respectively. So, in conventional L1 adaptive control
scheme, the ψ is defined by trial and error method while µ will
reach its final value by adaptation. In this work, LBHS algorithm
is applied to optimize ψ and µ in tandem by a method as shown
in Figs. 1, 2 to 3. In addition to that, adaptation laws, as in (4), (5)
and (6) are applied to improve a new harmony based on LBHS
algorithm, to adjust the values of ω, θ and σ only resulting to a
new value of µ. Concurrent adaptation incurs new harmony vec-
tor ZC = Z + Ẑ , where adaptation part Ẑ = [ψ̂ |µ̂] = [0|µ̂]. So, in
this methodology, ω, θ and σ explore both the local search space
and global search space, simultaneously, in a twofold manner, as

described in Fig. 4. The integral absolute error is calculated as
IAE =

∫ t
0 |r(t) − y(t)| dt and is taken as fitness function for the

optimization problem. Properly tuned harmony vector ZC leads
to achieve a bounded control signal to the system along with a
stable transient and steady state response.

The architecture of proposed lbest HS based L1 adaptive con-
troller is given in Fig. 5.

For any multi-agent search algorithm, like HS algorithm, the
proper balance between exploration and exploitation is of great
importance. The exploration capability depends on the growth of
the population variance. If the population variance increases over
the iterations then the algorithm has good explorative power to
explore new search spaces. Theorem 1 and Lemma 1 explain the
explorative capability of the proposed hybrid L1 adaptive control
scheme. At the same time the exploitation competency will be
determined by the convergence of the iterative process within its
spectral radius. Utilizing Theorem 2 and Lemma 2 the stability, in
the sense of convergence, of the entire optimization process for
hybrid L1 adaptive control scheme has been described.

Theorem 1. Let ZC = Z + Ẑ = {Zc1, Zc2, Zc3, . . . , ZcHMS} be
the current population and Y = {Y1, Y2, Y3, . . . , YHMS} be some
intermediate population obtained from new harmony improvisation
step of lbest HS Algorithm. With varying HMCR i.e. HMCR(t), the
HM consideration probability; varying PAR i.e. PAR(t), the pitch-
adjustment probability; fixed bw, the arbitrary distance bandwidth;
fixed GMCR, group memory considering rate and the allowable range
for the decision variables (Z, Ẑ) to be {Zmin, Zmax} and

{
Ẑmin, Ẑmax

}
respectively, where Zmin = a, Zmax = b, Ẑmin = c, Ẑmax = d with
a, b, c, d ∈ ℜ, and the following equation will hold:

E(Var(Y )) =

(
1 −

1
HMS

)

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HMCR · GMCR · Var(ZC )

+
1
3

· HMCR · GMCR · PAR · bw2

+
1
2

· (1 − HMCR · GMCR)(a + b)(c + d)

+
1
3

· (1 − HMCR · GMCR)(a2 + a · b + b2 + c2 + cd + d2)

+HMCR · GMCR · (1 − HMCR · GMCR) · ZC
2

−
1
4

· (1 − HMCR · GMCR)2 · (a + b + c + d)2

−HMCR · GMCR · (1 − HMCR · GMCR) · ZC (a + b + c + d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

Proof. If ZC = {Zc1, Zc2, Zc3, . . . , ZcHMS} is the current population,
then the population mean and quadratic population mean is given
by ZC = (1/HMS)

∑HMS
i=1 Zci and Z2

C = (1/HMS)
∑HMS

i=1 Z2
ci
respectively.

E(Var(ZC )) is the explorative power measurement of the popula-
tion variance Var(ZC ) =

1
HMS

∑HMS
i=1

(
Zci − ZC

)2
= Z2

C − ZC
2
. Let Y

with each element Yi is an intermediate population of harmony
memory improvisation process. Then for concurrent lbest version
of HS, each element Yi can be expressed as:

Yi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Zr + Ẑr , with probalityHMCR(t) · GMCR · (1 − PAR(t))
Zr + Ẑr + bw · rand , with probality 0.5HMCR(t) · GMCR · PAR(t)
Zr + Ẑr − bw · rand , with probality 0.5HMCR(t) · GMCR · PAR(t)
Znew + Ẑr , with probality (1 − HMCR(t) · GMCR)
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Fig. 4. Flowchart representation of lbest HS based L1 adaptive controller.

Fig. 5. Architecture of proposed lbest HS based L1 adaptive controller.

Assuming, ZCr = Zr + Ẑr is a random variable with uniformly
distributed random index r ∈ {1, 2, 3, . . . ,HMS}, with probability
pk = P(r = k) = (1/HMS), k ∈ {1, 2, 3, . . . ,HMS}.

The expectation of ZCr and Z2
Cr can be given as [35]:

E(ZCr ) =

HMS∑
k=1

pk · ZCk =
1

HMS

HMS∑
k=1

ZCk = ZC

and E(Z2
Cr ) =

HMS∑
k=1

pk · Z2
Ck =

1
HMS

HMS∑
k=1

Z2
Ck = Z2

C

Expectation of Yi is given as:

E(Yi) = HMCR(t) · GMCR · (1 − PAR(t)) · E(ZCr )
+0.5 · HMCR(t) · GMCR · PAR(t) · E(ZCr + bw · rand)
+0.5 · HMCR(t) · GMCR · PAR(t) · E(ZCr − bw · rand)
+(1 − HMCR · GMCR) · E(Znew + Ẑr )

(38)

Therefore, expectation of Y 2
i is given as:

E(Y 2
i ) = HMCR(t) · GMCR · (1 − PAR(t)) · E(Z2

Cr )
+0.5 · HMCR(t) · GMCR · PAR(t) · E(Z2

Cr + bw · rand)2

+0.5 · HMCR(t) · GMCR · PAR(t) · E(Z2
Cr − bw · rand)2

+(1 − HMCR(t) · GMCR) · E(Znew + Ẑr )2

(39)
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Now, the values of Znew , Z2
new , Ẑr , Ẑ

2
r have to be found out.Znew is a

randomly selected variable between the range Zmin = a, Zmax = b,
following the formula: Znew = Zmin + rand · (Zmax − Zmin). Ẑr is a
randomly selected variable between the range Ẑr min = c, Ẑr max =

d. Where, rand is a random number between 0 and 1 satisfying a
continuous uniform probability density function:

α (rand) =

{
1, rand ∈ [0, 1]
0, otherwise

Now,

E(rand) =

∫ 1

0
rand · α(rand) · drand =

[
rand2

2

]1
0

=
1
2

E(rand2) =

∫ 1

0
rand2 · α(rand) · drand =

[
rand3

3

]1
0

=
1
3

Therefore,

E(Znew) = a + E(rand) · (b − a) =
a + b
2

E
(
(Znew)2

)
= a2 + 2 · a · E(rand) · (b − a) + E(rand2) · (b − a)2

=
a2 + ab + b2

3

Similarly,

E(Ẑr ) =
c + d
2

E
((

Ẑr
)2)

=
c2 + cd + d2

3

By putting the values of E(Znew) and E
(
(Znew)2

)
in the Eqs. (38)

and (39) we get,

E(Yi) = HMCR(t) · GMCR · E(ZCr )

+
1
2
(1 − HMCR(t) · GMCR)(a + b + c + d)

= HMCR(t) · GMCR · ZC +
1
2
(1 − HMCR(t) · GMCR)(a + b + c + d)

(40)

and

E
(
(Yi)2

)
= HMCR(t) · GMCR · E

(
(ZCr )

2
)

+
bw2

3
HMCR(t) · GMCR · PAR(t)

+
1
2

· (1 − HMCR(t) · GMCR)(a + b)(c + d)

+
1
3
(1 − HMCR(t) · GMCR)(a2 + ab + b2 + c2 + cd + d2)

= HMCR(t) · GMCR · Z2
C +

bw2

3
HMCR(t) · GMCR · PAR(t)

+
1
2

· (1 − HMCR(t) · GMCR)(a + b)(c + d)

+
1
3
(1 − HMCR(t) · GMCR)(a2 + ab + b2 + c2 + cd + d2)

(41)

As mean of Y is given by: Y =
1

HMS

∑HMS
i=1 Yi

The expectation of Y is given by:

E
(
Y
)

=
1

HMS

HMS∑
i=1

E (Yi)

=
1

HMS

HMS∑
i=1

[
HMCR(t) · GMCR · ZC

+
1
2
(1 − HMCR(t) · GMCR)(a + b + c + d)

]
= HMCR · GMCR · E(ZC ) +

1
2
(1 − HMCR · GMCR)(a + b + c + d)

(42)

where, 1
HMS

∑HMS
i=1 HMCR(t) = HMCR

Similarly, Y 2 =
1

HMS

∑HMS
i=1 (Yi)

2

The expectation of Y 2 is given by:

E
(
Y 2
)

=
1

HMS

HMS∑
i=1

E
(
(Yi)2

)

=
1

HMS

HMS∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
HMCR(t) · GMCR · Z2

C +
bw2

3
HMCR(t) · GMCR · PAR(t)

+
1
2

· (1 − HMCR(t) · GMCR)(a + b)(c + d)

+
1
3
(1 − HMCR(t) · GMCR)(a2 + ab + b2 + c2 + cd + d2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= HMCR · GMCR · Z2

C +
bw2

3
· HMCR · GMCR · PAR

+
1
2

· (1 − HMCR · GMCR)(a + b)(c + d)

+
1
3
(1 − HMCR · GMCR)(a2 + ab + b2 + c2 + cd + d2)

(43)

where, 1
HMS

∑HMS
i=1 HMCR(t) = HMCR and 1

HMS

∑HMS
i=1 PAR(t) = PAR

and, Y
2

=
( 1
HMS

)2 (∑HMS
i=1 (Yi)

)2
E
(
Y

2
)

=

(
1

HMS

)2
(

HMS∑
i=1

(Yi)

)2

=
1

HMS
· E

[
1

HMS
·

HMS∑
i=1

(Yi)
2

]

+
(HMS − 1)

HMS
· E

⎡⎢⎣ 1
HMS

·

HMS∑
i,j=1
i̸=j

Yi · Yj

⎤⎥⎦
As, E

(
Yi · Yj

)
= E (Yi) · E

(
Yj
)
, therefore,

E
(
Y

2
)

=
1

HMS
· E
(
Y 2
)

+
(HMS − 1)

HMS
·
[
E
(
Y
)]2

(44)

Now,

E(Var(Y )) = E(
1

HMS

HMS∑
i=1

(Yi − Y )2) = E
(
Y 2
)

− E
(
Y

2
)

=
HMS − 1
HMS

·

[
E
(
Y 2
)

−
[
E
(
Y
)]2] (45)

Putting the values from Eqs. (42) and (43), in Eq. (45), one will
get:

E(Var(Y )) =

(
1 −

1
HMS

)
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×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HMCR · GMCR · Z2
C +

1
3

· HMCR · GMCR · PAR · bw2

+
1
2

· (1 − HMCR · GMCR)(a + b)(c + d)

+
1
3

· (1 − HMCR · GMCR)(a2 + a · b + b2 + c2 + cd + d2)

−

⎛⎜⎝HMCR · GMCR · ZC

+
1
2

· (1 − HMCR · GMCR) · (a + b + c + d)

⎞⎟⎠
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or,

E(Var(Y )) =

(
1 −

1
HMS

)

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HMCR · GMCR · Var(ZC ) + HMCR · GMCR · ZC
2

+
1
3

· HMCR · GMCR · PAR · bw2

+
1
2

· (1 − HMCR · GMCR)(a + b)(c + d)

+
1
3

· (1 − HMCR · GMCR)(a2 + a · b + b2 + c2 + cd + d2)

−HMCR
2
· GMCR2

· ZC
2

−
1
4

· (1 − HMCR · GMCR)2 · (a + b + c + d)2

−HMCR · GMCR · (1 − HMCR · GMCR) · ZC (a + b + c + d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or,

E(Var(Y )) =

(
1 −

1
HMS

)

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HMCR · GMCR · Var(ZC )

+
1
3

· HMCR · GMCR · PAR · bw2

+
1
2

· (1 − HMCR · GMCR)(a + b)(c + d)

+
1
3

· (1 − HMCR · GMCR)(a2 + a · b + b2 + c2 + cd + d2)

+HMCR · GMCR · (1 − HMCR · GMCR) · ZC
2

−
1
4

· (1 − HMCR · GMCR)2 · (a + b + c + d)2

−HMCR · GMCR · (1 − HMCR · GMCR) · ZC (a + b + c + d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The theorem is proved. ■

Depending on this theorem, the following lemma can be given
to show the exploration capability of this algorithm analytically.

Lemma 1. If HMCR (t) and GMCR is chosen nearly equal to 1, and
the bandwidth bw is chosen to vary depending upon Var(Z) as,
bw = κ

√
Var(Z), then with the increase of the iteration the explo-

rative power of the lbest HS algorithm will increase exponentially.

Proof. If HMCR(t) ≈ 1 and GMCR ≈ 1, then HMCR ·GMCR ≈ 1 and
all the terms related with (1 − HMCR · GMCR) can be neglected.
Then the expectation of population variance becomes:

E(Var(Y )) =

(
1 −

1
HMS

)⎛⎝HMCR · GMCR

+
κ2

3
· HMCR · GMCR · PAR

⎞⎠ · Var(ZC )

or,

E(Var(Y )) =

(
1 −

1
HMS

)
·HMCR·GMCR·

(
1 +

κ2

3
· PAR

)
·Var(ZC )

(46)

After itr number of iteration it become,

E(Var(Yitr )) =

{(
1 −

1
HMS

)
· HMCR · GMCR ·

(
1 +

κ2

3
· PAR

)}itr

· Var(ZC ) (47)

From Eq. (47), it is evident that the population variance is
increasing exponentially over the iterations. Therefore, this al-
gorithm shows exploration capability. This proves the lemma.

■

With the exploration capability it is also important to have
good exploitation capability of any searching algorithm so that
it can converge at the end. To show the convergence of the
proposed concurrent lbest HS based L1 adaptive, Theorem 2 and
Lemma 2 are given below.

Theorem 2. The iterative equation of lbest version of HS comprises
of expectation of population variance E(Var(ZC )) and expectation of
population mean E(ZC ) will converge if the spectral radius of that
iterative matrix is less than unity.

Proof. As, HMCR ≈ 1,∴ HMCR ≈ 1, so the term (1 − HMCR ·

GMCR) can be omitted from the equations. Then Eqs. (37) and (40)
becomes:

E
(
Y
)

= HMCR · GMCR · E(ZC ) (48)

E(Var(Y )) =

(
1 −

1
HMS

)(HMCR · GMCR · Var(ZC )

+
1
3

· HMCR · GMCR · PAR · bw2

)
(49)

Assumption 1. Let us assume, that the bandwidth is proportional
with the square root of the expectation mean of population
(i.e. bw ∝

√
E(ZC ) = κ

√
E(ZC ) ).

Therefore,

E(Var(Y )) =

(
1 −

1
HMS

)⎛⎝HMCR · GMCR · Var(ZC )

+
κ2

3
· HMCR · GMCR · PAR · E(ZC )

⎞⎠
Now, the iterative equation becomes:[
E(Var(Y ))

E(Y )

]
=

[
M1 M2
M3 M4

]
·

[
E(Var(ZC ))

E(ZC )

]
(50)

where, M1 =
(
1 −

1
HMS

)
· HMCR · GMCR,

M2 =
(
1 −

1
HMS

)
·
κ2

3 · HMCR · GMCR · PAR,
M3 = 0,
M4 = HMCR · GMCR.
It takes a form of iterative equation Y = M · ZC .

where, Y =

[
E(Var(Y ))

E(Y )

]
, ZC =

[
E(Var(ZC ))

E(ZC )

]
andM =

[
M1 M2
M3 M4

]
.

The condition of convergence for this iterative matrix M de-
pends on this following lemma.

Lemma 2. If the spectral radius of any iterative matrix M is ρ(M),
then, the iterative matrix will converge if ρ(M) < 1. Mathematically,
it can be written as:

if ρ(M) < 1 then lim
n→∞

Mn
 = 0 (51)

and if ρ(M) > 1 then lim
n→∞

Mn
 = ∞ (52)

Proof. Proof for this lemma is given in Appendix. ■
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Fig. 6. Nature of the disturbance.

Fig. 7. Nature of 10 dbw Gaussian noise.

The characteristic roots of iterative matrix given in Eq. (50) is,

λ1 =

(
1 −

1
HMS

)
HMCR · GMCR and λ2 = HMCR · GMCR.

Now, as HMS > 1,∴
(
1 −

1
HMS

)
< 1, HMCR(t) < 1,∴ HMCR < 1

and GMCR < 1, therefore λ1 < 1.
From this observation, the second root λ2 < 1.
Again, λ1

λ2
=
(
1 −

1
HMS

)
. As, HMS > 1,∴

(
1 −

1
HMS

)
< 1, so,

λ2 > λ1.
Therefore, the spectral radius of iterative matrix M is ρ(M) =

MAX (λ1, λ2) = λ2 < 1.
Thus the iteration equation of harmony search algorithm will

converge.
It completes the proof. ■
In case of conventional HS algorithm, the spectral radius of

iterative matrix (Mconv) can be given as [36] ρ(Mconv) = HMCR.
Whereas, in this case for lbest HS algorithm ρ(M) = HMCR ·

GMCR. It is evident that, ρ(M) < ρ(Mconv), as, HMCR ≈ HMCR,
HMCR < 1,GMCR < 1; HMCR · GMCR < HMCR. Therefore the
rate of convergence of the proposed lbest variant of HS algorithm,
i.e. LBHS is higher than that of the conventional HS algorithm.

From these analysis, it can be clearly shown that the LBHS
based concurrent hybrid L1 adaptive controller is efficient enough
to give better convergence which incurs good transient perfor-
mance as well as high robustness.

4. Simulation and experimental case studies

To demonstrate the effectiveness of the proposed LBHS based
concurrent hybrid L1 adaptive control scheme for tracking control

of a class of non-linear systems both simulation and experimental
studies are performed. Benchmark systems, like Duffing’s oscil-
latory chaotic system, spring–mass–damper system, 4th order
unstable non-minimum phase cart–pendulum system are con-
sidered in simulation case studies, whereas in experimental case
study speed control of a DC motor with uncertainty is studied. The
non-linear dynamics of the systems are simulated using a fixed
step 4th order Runge–Kutta method, with step size (sampling
time) ∆t = 0.01 s for chaotic Duffing’s system, spring–mass–
damper system, cart–pendulum system and ∆t = 0.1 s for
DC motor. During L1 adaptive controller operation at first the
parameters are adapted for 200 s and then, the adapted controller
is evaluated for 10 s. The adaptation gains (Γ ) are switched
to zero during the evaluation period. In HS algorithm based
designs, 30 numbers of harmonies are taken and 200 harmony
improvisations are performed to find the best candidate con-
troller. The stochastic optimization techniques for obtaining best
candidate controller run 10 times each and then the optimal
candidate controllers evaluate the system for 10 s duration. For
each case studies, the results of the proposed hybrid local best
HS (HybdLBHS) based L1 adaptive control method is compared
with different types of control strategies viz. local best harmony
search (LBHS) based state feedback control, basic L1 adaptive
control, PID augmented L1 adaptive control, fuzzy feedback filter
based L1 Adaptive control, hybrid PSO (HybdPSO) based L1 adap-
tive control, hybrid HS (HybdHS) based L1 adaptive control. The
description of these control methodologies are briefed below.
LBHS based state feedback tracking control: In this scheme,
the control law is formulated as the conventional state feedback
tracking control, without using L1 adaptive controller, and the pa-
rameter values are tuned by using lbest HS algorithm. 30 numbers
of harmonies are improvised for 200 times to get optimal setting
of the controller parameters.
L1 adaptive control [10,11,21]: In this design strategy, only un-
known constant related to system (ω), parameter uncertainty
vector (θ ), time varying disturbance of the system model (σ ) are
adapted and the static ψ is manually set a priori. The adaptation
starts at t = 0s and continues up to t = 200 s. Then, the system is
evaluated for 10 s with this reference signal. During this period,
adaptation is turned off and the controller operates with already
adapted parameters.
PID augmented L1 adaptive control [22]: In this design tech-
nique, conventional L1 adaptive controller is augmented with PID
controller to eliminate the steady state error.
Fuzzy feedback filter based L1 adaptive control [23]: In this
design, the gain to the controller, k, is designed by using fuzzy
logic and the fuzzy system is tuned by using particle swarm
optimization (PSO).
HybdPSO based L1 adaptive control: Furthermore, particle
swarm optimization (PSO) [37], most popularly used in engineer-
ing applications, is also utilized to design the hybrid controller in
conjunction with L1 adaptive control strategy and the results are
compared to that of the HS based hybrid design technique.
HybdHS based L1 adaptive control: In this technique, basic HS
algorithm based optimization of parameters for Z = [ψ | µ] and L1
adaptive control strategy, which only adjusts µ, run concurrently.
To perform this simulation, population size of 30 harmony is
taken. For each simulation 200 harmony improvisation of HS
algorithm is set. Here, the adaptation gains and other free param-
eters of design are optimized by the HS algorithm, thus reducing
the error due to manual tuning.
HybdLBHS based L1 adaptive control: In this proposed design
technique, only the basic HS algorithm is replaced by the lbest
topological model of HS algorithm. All other parameters and
settings are kept identical to previous design techniques.
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Fig. 8. Evaluation period system response of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback filter L1
Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study- I.

Case study- I
In this case study, forced oscillatory Duffing’s system with

disturbance is considered and is given as:

ẋ1 = x2
ẋ2 = −0.1x2 − x31 + 12 cos(t) + u(t) + d(t)
y = x1

⎫⎬⎭ (53)

where, d(t) represents time varying disturbance with random
amplitude varying between [−1 1] with a time period of 0.5
s, as given in Fig. 6. The control objective is to track the ref-
erence trajectory ym = 2 ∗ sin t . At the outset, the controllers
are tuned for the system with disturbance employing different
control strategies. Then, the tuned controllers are also subjected

to 10 dbw Gaussian noise, as shown in Fig. 7, to study the
robustness of the design procedures. As a good trade-off between
adaptation rate and robustness of operation [10,11], the value of
adaptation gains for basic L1 adaptive controller are selected as Γ
= 9,000,000 9,200,000 8,950,000. The results are given in Table 1
and Figs. 8 to 9 show the responses with disturbance and Fig. 10
shows the responses with noise. The control input u(t) is force
and the output y is displacement, all are in S.I. unit.

In the first control scheme i.e. LBHS based state feedback
tracking control, the approximation of time varying disturbances
and uncertainties are not up to the mark and thus, producing
unsatisfactory transient performance as depicted in Fig. 8(a). Con-
ventional L1 adaptive controller arbitrarily chooses its parameters
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Fig. 9. Evaluation period control effort and error signal of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback
filter L1 Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study- I.

within the range obtained from mathematical calculation of L1
norm condition [10,11,21], which does not provide optimal re-
sult. On the other hand, in the proposed method, the optimal
parameter values are evolved by using lbest HS algorithm, which
delivers accurate control effort. Therefore without augmenting
another controlling technique like PID, the proposed method is

capable of giving better performance. Augmenting PID controller
with L1 adaptive controller [22] requires more computational
time which is disadvantageous in real-time experimentation. Al-
though, a PSO based fuzzy logic technique [23] is used to tune
the gain of the controller k, while other parameters of L1 adaptive
controller are arbitrarily chosen within the ranges obtained from
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Fig. 10. Evaluation period system response of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback filter L1
Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study- I with 10 dbw Gaussian noise.

Table 1
Comparative study of different control strategies for case study– I.
Control strategy IAE value

For disturbance For 10 dbw noise

Best Average Std. Dev.

LBHS based state feedback tracking 2.3600 2.6115 0.2204 2.6818
L1 adaptive [10,11,21] 0.2347 – – 0.4559
PID augmented L1 adaptive [22] 0.2179 – – 0.2446
Fuzzy feedback filter L1 adaptive [23] 0.1645 0.1955 0.0322 0.2854
HybdPSO based L1 adaptive 0.0129 0.0454 0.0208 0.0199
HybdHS based L1 adaptive 0.0121 0.0279 0.0128 0.0197
Proposed HybdLBHS based L1 adaptive 0.0118 0.0119 0.0003 0.0186
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Fig. 11. Evaluation period system response of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback filter L1
Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study-II.

mathematical calculations. So, other parameters are not optimal
one and gives poor result compared to the proposed method.
It is also analytically proved in this paper that the performance
of lbest HS algorithm is better than basic HS algorithm. There-
fore, it can be observed from Table 1 that, the performance of
hybrid LBHS based L1 adaptive controller is superior to other
control strategies considered in this paper in terms of integral
absolute error (IAE). Due to optimal parameter setting, the pro-
posed method requires control signal with lower magnitude than
the other control strategies to track the desired trajectory. The
control signal exhibits some oscillations of small amplitude due
to the adaptation of time varying uncertainties and disturbances
continuously. In case of error signal, amplitude reduces ten times

with some oscillations of very small magnitude in hybrid LBHS
controller than conventional L1 adaptive controller. The Proposed
method generates control signal with same frequency that of
the uncertainties and disturbances, as shown in Fig. 9. Perfect
estimation of uncertainties ensure perfect cancellation of them
and assure good performances.

4.1. Simulation case study

The noise rejection capability of the tuned controllers are
evaluated with the introduction of 10 dbw Gaussian noise to
the system under control. The results show, in Table 1, that
the proposed hybrid lbest HS based L1 adaptive control strategy
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Fig. 12. Evaluation period control effort and error signal of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback
filter L1 Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study-II.

evolves as the best candidate among the other variations studied
here. Fig. 10 shows, without further tuning the performances of
LBHS based state feedback tracking controller gives poor per-
formance. Performance of L1 adaptive controller also degrades
when noise enters into the system. At the same time, the pro-
posed method gives very good transient as well as steady state
performance.

Case study-II

A spring–mass–damper system is examined in this case study

and is given as:

ẋ1 = x2
ẋ2 = −0.02x1 − 0.67x31 − 0.1x32 + u(t)
y = x1

⎫⎬⎭ (54)
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Table 2
Comparative study of different control strategies for case study-II.
Control strategy IAE value

For disturbance For 10 dbw noise

Best Average Std. Dev.

LBHS based state feedback tracking 7.8562 7.8632 0.0073 14.7072
L1 adaptive [10,11,21] 0.0813 – – 0.2694
PID augmented L1 adaptive [22] 0.0800 – – 0.2560
Fuzzy feedback filter L1 adaptive [23] 0.0405 0.1894 0.1255 0.2813
HybdPSO based L1 adaptive 0.0311 0.4851 0.0175 0.1625
HybdHS based L1 adaptive 0.0305 0.0328 0.0016 0.0529
Proposed HybdLBHS based L1 adaptive 0.0140 0.0207 0.0034 0.0937

Fig. 13. Evaluation period system response of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback filter L1
Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study-II with 10 dbw Gaussian noise.
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Fig. 14. Evaluation period system response of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback filter L1
Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study-III.

where, d(t) represents time varying disturbance and noise, similar
as case study- I. The control input u(t) is force and the output y is
displacement, all are in S.I. unit. The control objective is to track
the reference trajectory ym = 2 ∗ sin t .

This case study also performed as case study – I with all similar
paraphernalia. The values of adaptation gains for L1 adaptive con-
trol strategy are evolved as Γ = 40,000 42,700 39,400 to achieve
the tracking performance. A comparative study of different con-
trol strategies are presented in Table 2 and Figs. 11 to 13 show
the tracking performances for this case study. Table 2 illustrates
that, the performance of hybrid LBHS controller is better than
other control strategies. From Fig. 12, it can be said that the
amplitude of control effort required to track desired trajectory

Table 3
Comparative study of different control strategies for case study-III.
Control strategy IAE value

Best Average Std. Dev.

LBHS based state feedback tracking 0.0724 0.0942 0.0139
L1 adaptive [10,11,21] 0.0465 – –
PID augmented L1 adaptive [22] 0.0390 – –
Fuzzy feedback filter L1 adaptive [23] 0.0217 0.0233 0.0017
HybdPSO based L1 adaptive 0.0019 0.0024 0.0005
HybdHS based L1 adaptive 0.0018 0.0064 0.0058
Proposed HybdLBHS based L1 adaptive 0.0009 0.0033 0.0020
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Fig. 15. Evaluation period control effort and error signal of (a) LBHS based state feedback tracking, (b) L1 adaptive, (c) PID augmented L1 adaptive, (d) Fuzzy feedback
filter L1 Adaptive, (e) HybdPSO, (f) HybdHS, (g) HybdLBHS controller for case study-III.

is less in the proposed method and it also gives quick transient
performance. To adapt the uncertainties, other methods take
more time than the proposed method and hence give random
control signal at the transient period. In Fig. 12, it is also shown
that steady state error is also minimized in our proposed method.
The performance of the control schemes with 10 dbw Gaussian
noise are shown in Figs. 13 and 13(a) shows that, the noise
rejection characteristics of LBHS based state feedback tracking
controller is extremely poor. Further, from Table 2 and Fig. 13(g),
it can be stated that in terms of noise rejection phenomenon also

the proposed HybdLBHS control scheme outperforms all other
contemporary control schemes compared in this paper.
Case study-III

In this case study, the proposed method also demonstrates its
applicability on a multi input multi output (MIMO) system. The
required framework to control a MIMO system is elaborated at
first. Let, the MIMO dynamics is given as:

ẋ(t) = Amx(t) + b(ω u(t) + θ T (t)x(t) + σ (t)), x(0) = x0 (55)
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Fig. 16. Experimental arrangement for DC motor speed control.

Fig. 17. Evaluation period system response of (a) L1 adaptive, (b) PID augmented L1 adaptive, (c) Fuzzy feedback filter L1 Adaptive, (d) HybdPSO, (e) HybdHS, (f)
HybdLBHS controller for case study-IV with input-I.

y(t) = cT x(t) (56)

where, x(t) ∈ ℜ
n is the state vector, u(t) ∈ ℜ

m and y(t) ∈ ℜ
k are

the input and output of the system, Am ∈ ℜ
n×n is system matrix,

b ∈ ℜ
n×m and c ∈ ℜ

k×n are known constant vectors. ω ∈ ℜ
m×m,

θ (t) ∈ ℜ
n×m and σ (t) ∈ ℜ

m are unknown constant, time varying
uncertainty and disturbance present in the system.

An MIMO unstable non-minimum phase [38] 4th order
inverted pendulum with cart system with time varying

disturbances is chosen here. The system dynamics is given as
[39]:

ẋ1 = x2

ẋ2 =
−mg cos x3 sin x3 + ml sin x3x24 + u

M + m sin 2x3
+ d1(t)

ẋ3 = x4

ẋ4 =
−ml cos x3 sin x3x24 + (M + m)g sin x3 − u cos x3

Ml + ml sin 2x3
+ d2(t)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(57)
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Fig. 18. Evaluation period control effort and error signal of (a) L1 adaptive, (b) PID augmented L1 adaptive, (c) Fuzzy feedback filter L1 Adaptive, (d) HybdPSO, (e)
HybdHS, (f) HybdLBHS controller for case study-IV with input-I.

where, x1, x2, x3, x4 are the cart position, cart velocity, pendulum
angle, pendulum angular velocity respectively, u is the required
force, all are in S.I. unit. d1(t) and d2(t) represent the disturbance
with random amplitude varying between [−1 1] and [−4 4]
respectively, with a time period of 0.5 s. In comparison with
(1), in this case study the constant gain component of u(t) is
taken as ω and the time varying gain component is considered
as disturbance σ (t). Here the aim is to produce a control law
that can stabilize the unstable non-minimum phase system to a
reference position (here, the reference cart position is 0.1*u(t))
and can properly cancels out uncertainties and disturbances. Here
the control law of L1 adaptive controller is chosen as [10,11]:

u(s) = −kC(s)
[
η̂(s) − kg r(s)

]
− Kx(t) (58)

where, K ∈ ℜ
n×m is the state-feedback matrix. By putting the

value of u from (58) in (55), the closed loop system model
becomes:
ẋ(t) = A0x(t) + b(−Kx(t) + ω u(t) + θ T (t)x(t) + σ (t))
= (A0 − bK )x(t) + b(ω u(t) + θ T (t)x(t) + σ (t))
= Amx(t) + b(ω u(t) + θ T (t)x(t) + σ (t))

(59)

The value of K has to be chosen properly so that, Am = (A−bK )
will become stable Hurwitz matrix.

Here, the mass of pivot M = 1 kg, mass of pendulum rod m =

0.1 kg, length of the pendulum rod l = 0.3 m is considered [39].
The mass of pivot is a finite large (M ≫ m) unknown value
within a specified bound so that u will belong within the actuator
saturation limit. In this work, for above specification, the control
signal u ∈ [−20, 20] which is within the actuator saturation
limit [39].

Different control strategies, same as the above two case stud-
ies, are done to show the tracking performance of cart position
and the results are given in Table 3. In case of unstable, non-
minimum phase system, all of its states have to be stabilized.
Therefore, the nature of all the four states for different control
strategies are shown in Fig. 14. Control effort required and error
signal are given in Fig. 15.

4.2. Experimental case study

Case study-IV
A DC motor with loading arrangement is chosen to demon-

strate the usefulness of the proposed hybrid adaptive control
strategies. The state model of DC motor can be written as:

ẋ1 = x2

ẋ2 = −

(
BRa

JLa
+

KbKT

JLa

)
x1 −

(
Ra

La
+

B
J

)
x2

+
KKT

JLa
u(t)

y = x1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(60)

where, [x1x2] = [ωω̇] and the output y is the angular speed of the
motor (in rad/s) i.e. ω.

The unknown motor parameters are: armature resistance (Ra),
armature inductance (La), inertia constant (J), damping factor (B),
motor back emf constant (Kb), motor torque constant (KT) and
motor driver circuit constant (K ).

In contrast with the control strategies discussed so far for
benchmark processes in simulation, where the system parame-
ters were known, this situation provides a real-time challenge for
the proposed hybrid concurrent model of L1 adaptive controller,
where no a priori knowledge is available regarding the system
under control. The parameters of the DC motor are therefore, at
first, estimated with the help of HS algorithm. With this estimated
parameters the DC motor has got uncertainty in the model, nat-
ural disturbances as well and that is used in real-time operation.
To perform the parameter estimation, the open-loop test data of
input voltage and its corresponding speed of the DC motor are
acquired for ten minutes. The speed measurement is carried out
using a tacho-generator mounted on the motor shaft. Here the
HS algorithm determines the best harmony vector containing the
unknown parameters for which difference between the model
output and the experimental output data, for the same input,
accumulated over the entire set of input–output experimental
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Fig. 19. Evaluation period system response of (a) L1 adaptive, (b) PID augmented L1 adaptive, (c) Fuzzy feedback filter L1 Adaptive, (d) HybdPSO, (e) HybdHS, (f)
HybdLBHS controller for case study-IV with input-II.

data, is found minimum. Five test cases are carried out to obtain
the results finally.

Here, the speed control of a 25 W, 50 V, 3000 rpm DC motor
is tested where the control signal is generated in MATLAB R⃝.
That controlled voltage input is then fed back to the DC motor
through a driver circuit and speed of the motor is taken as the
output through a tacho-generator. This speed is converted into
voltage with conversion ratio 2 V/1000 rpm and is fed back to
the MATLAB R⃝ to produce required control action. The motor is
equipped with an aluminium disc mounted on the shaft for eddy
current loading, as shown in Fig. 16. The LBHS and PSO [37]
algorithms are separately combined with the L1 adaptive con-
troller, to develop the proposed hybrid concurrent controllers
in such a fashion that, it can achieve the automation in the
design process and also guarantee the stability of the designed
controllers.

For this experimental study, two different reference trajecto-
ries are considered, as follows:

Input reference-I: A four step variable DC signal given as:

r(t) =

⎧⎪⎨⎪⎩
1000u(t) 0 ≤ t ≤ 150 s.
1500u(t) 150 < t ≤ 300 s.
800u(t) 300 < t ≤ 450 s.
1200u(t) 450 < t ≤ 600 s.

Input reference-II: A single step fixed DC signal with 100% load-
ing, given as:

r(t) = 800u(t) 0 ≤ t ≤ 600 s.

The unknown constant, time varying uncertainties and distur-
bances are predicted and adapted offline with input reference-I.
Then the tuned controller is utilized to evaluate the system dy-
namics online with both the input references. The values of
adaptation gains for L1 adaptive control strategy are as Γ =

21,000 24,700 20,100 to achieve the tracking performance.
A comparative study of different control strategies with dif-

ferent reference input for this case study is presented in Table 4
and Figs. 17 to 18 show the tracking performances for input-I.
Similarly, Figs. 19 to 20 show the tracking performances for the
input-II. From Table 4 it is evident that the hybrid concurrent
model of lbest HS algorithm outperforms the other controller
design strategies considered in this paper. Also, comparing the
responses of Fig. 19 it is clear that during loading the tracking
performance in case of Hybrid LBHS based L1 Adaptive is much
better than conventional L1 Adaptive controller. Therefore, from
results it is evident that, at the time of online evaluation, if the
time varying uncertainties and disturbances present in the system
belong within the actuator saturation limit, then the tuned lbest
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Fig. 20. Evaluation period control effort and error signal of (a) L1 adaptive, (b) PID augmented L1 adaptive, (c) Fuzzy feedback filter L1 Adaptive, (d) HybdPSO, (e)
HybdHS, (f) HybdLBHS controller for case study-IV with input-II.

Table 4
Comparative study of different control strategies for case study-IV.
Control strategy IAE value

Input-I Input-II

L1 adaptive [10,11,21] 10002.30 6038.56
PID augmented L1 adaptive [22] 11291.02 3786.42
Fuzzy feedback filter L1 adaptive [23] 13554.84 22236.07
HybdPSO based L1 adaptive 9989.54 1766.42
HybdHS based L1 adaptive 9994.71 1838.63
Proposed HybdLBHS based L1 adaptive 9328.89 1631.86

HS based L1 adaptive controller is capable of providing stable
tracking performances.

5. Conclusion

The present work proposes a novel scheme for controlling a
class of non-linear systems with uncertainty and external distur-
bances utilizing the stable optimal L1 adaptive robust tracking
controllers, designed by hybridizing L1 adaptive control scheme
and a lbest variant of HS algorithm based metaheuristic optimiza-
tion. The stability of the proposed controller is guaranteed by the
Lyapunov theory and the required automation is accomplished

by employing lbest HS algorithm based optimization technique.
The robustness issue is being taken care of by selecting the filter
parameters properly and the good transient performance with
fast adaptation is obtained by selecting optimal adaptation gains.
The explorative and exploitative behaviour of the proposed lbest
HS based hybrid L1 adaptive controller is precisely detailed and
convergence of the overall process has been established analyti-
cally. The proposed strategy is successfully implemented for both
in simulation and in real-time experimentations. It is successfully
validated that, the proposed lbest HS based hybrid concurrent L1
adaptive control scheme evolved as a superior approach com-
pared to other competing controllers, designed using basic HS-
and PSO-based approaches.

A prospective research initiative may focus on higher order
filter design for L1 adaptive controller to mitigate the high fre-
quency contamination in control signal due to high adaptive
gains. The effectiveness of the proposed lbest HS based L1 adap-
tive controller architecture for higher order non-linear systems,
time delay systems, systems with Markovian jump, intercon-
nected MIMO systems may be studied for simultaneous adap-
tive and robust control option. Moreover, the proposed control
scheme may be further extended to cope with the dynamics of
mathematically ill-defined systems.
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Appendix

Proof of Lemma 2.
Let, M be the iterative matrix of Jordon form M = Z J Z−1.

where J = diag(J0, J1).
Then for nth iteration it become Mn

= Z Jn Z−1.
Now the spectral radius of iterative matrix is ρ(M) = ρ(J). If

ρ(M) = ρ(J) < 1 then Jn converges to 0 [40] and as well as Mn

converges to 0 (i.e. limn→∞ ∥Mn∥ = 0).
Now, if ρ(M) = ρ(J) > 1, then (Jn)ii = λn, where λ is an Eigen

value with |λ| > 1. Now, if ξ is the ith column and ξ ′ is the ith
column of Z−1, then

ξ ′Mnξ = ξ ′Z Jn Z−1ξ = λn

therefore, limn→∞

⏐⏐ξ ′Mnξ
⏐⏐ = ∞ and limn→∞ ∥Mn∥ = ∞.

The proof is completed. ■
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