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Abstract

For two decades, the AI7XXX series alloys have been playing an extensive role in aerospace and
automotive industrial applications due their excellent properties such as toughness, fatigue, strength
and low density. However, the current scenario for all these applications, there is a significant
improvement at service loads as well as wear resistance properties at elevated temperatures. The main
focus of the current investigation is with the microstructure analysis of AA7150-hexagonal Boron
Nitride (hBN) nanocomposites which are fabricated through ultrasonic assisted double stir casting
process. The Scanning Electron Microscope and Optical Microscope were used to study the particle
distribution, grain refinement of the monolithic AA7150 alloy, nanocomposites. The fractured
surfaces and wear surfaces were also studied the influence of applied load as well as hBN weight
percentage on nanocomposites and compared with base matrix.

1. Introduction

Reinforcement of ceramic nanoparticles in the Metal Matrix Composites (MMCs) are suitable and promising
materials for wide range of applications. The fabrication of metal matrix nanocomposites (MMnCs) is facing a
crucial problem of low wettability with nano-level fine particles in the molten metal liquid which prone to form
agglomeration/clusters during the process. These agglomerations/clusters leads to reduce the uniform
distribution of ceramic nanoparticles throughout the molten matrix, result in loss of composite strengthening
potential. To avoid this problem during the fabrication process of MMnCs, the ultrasonic assisted stir casting
was introduced [1]. Wu et al [2], investigated the microstructure as well as mechanical properties of Al1356-SiCnp
nanocomposites which is fabricated by ultrasonic treatment via squeeze casting. It is noticed that the SiC
nanoparticles are homogeneously dispersed and enhancement of tensile strength of the MMnCs compared to
base Al356 alloy. Aluminum (Al)-Magnesium (Mg)-Zinc (Zn)-Cupper (Cu) alloy materials are widely used as
critical components in automotive and aerospace sectors due to their superior physical and mechanical
properties such as strength to weight ratio, higher ductility, high temperature survivability and numerous
engineering properties [1, 2]. Yet, they exhibit low abrasive wear under lubricating conditions against the sliding
surface making them less futile to tribological applications consequently failure of various components.
However, to overcome this problem, solid lubricants were introduced into the aluminium alloys for preparing
the MMCs [3-5]. Especially in upper and lower wings, fuselage, stringers and passenger seat tracks of an aircraft.
Due to self-lubricating property, the composites accentuated high damping capacity, low thermal expansion [6],
low wear and friction [7, 8] an excellent anti-seizure property [9, 10] besides exhibiting reduced temperature rise
[11, 12] at mating surface. This research article deals with microstructure analysis of monolithic AA7150 and
hBN reinforced nanocomposites for particle distribution through Scanning Electron Microscope (SEM), grain
size through Optical Microscope (OM); further, the studies on the surface wear of the AA7150 and hBN
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Table 1. The Elemental composition of AA7150 by weight percentage.

Elemental Composition Zn Mg Cu Fe Si Zr Mn Al

AA7150 6.37 2.56 2.25 0.12 0.08 0.11 0.009 Balance

Table 2. The base matrix and reinforcement materials properties.

Material Elastic Modulus (GPa) Density (g/cc) Hardness (HV) Tensile Strength (MPa)
AA7150 70-80 2.83 41 115
hBN 675 2.21 194 620

reinforced nanocomposites surface of the samples at minimum & maximum load conditions and ultimate
tensile fractured surface analysis at 1.5%hBN, 2.0%hBN, monolithic material as well.

2. Materials and methods

The present investigation, AA7150 (Al-Zinc alloy under 7XXX series) was selected as the matrix material and
procured in the form of ingots from M/s. Venuka Engineering Private Limited, Hyderabad, India. The chemical
composition of the AA7150 is presented in table 1. The nanoparticle reinforcement material of hexagonal Boron
Nitride (hBN: 70 nm size with the laboratory grade purity of 99.5%) was used and procured from Sisco Research
Laboratories Pvt. Ltd (SRL) - India. The mechanical properties of matrix and reinforcement materials are
presented in table 2. The hBN nanoparticles were added at steps of 0.5 wt% into a molten AA7150 to achieve
0.5% to 2.0% nanocomposites by using ultrasonic assisted liquid metallurgy route. This liquid metallurgy route
with mechanical stirrer commonly known as vertex method of casting. Degassing treatment was performed
using a degassing tablet Hexachloroethane (C,Clg) and than 1 wt% of Magnesium (Mg) was used as catalyst to
improvement of the wettability while mixing the nanoparticles in liquid pool. The fabrication process involves
two steps of stirring action, each step takes 10 min of time. Further, ultrasonication was performed for 10 min to
achieve uniform dispersion and distribution of nano hBN particles in the molten alloy. The processed molten
metal was transferred into preheated cast iron mold which contains cylindrical holes. The solidified blocks were
machined according to ASTM E8M, ASTM G99 and ASTM E92 for Ultimate Tensile Strength (UTS), wear and
microhardness testing. Cast AA7150-hBN nanocomposite was also machined as per microstructure studies
which were subjected to optical, metallographic and particles distribution. The hardness was performed on
Vicker microhardness tester (Make: Shimadzu, Model: HMV-G20ST) as per ASTM E92. The UTS was
performed on Blue star make WDW-100 S as per ASTM E8M, wear and friction was performed using pin on disc
apparatus of Magnum Engineering, wear and friction test model RIG-TE-165-SPOD with a hardened steel
counter disk of EN31 with 62 HRC hardness. The size of the specimen was maintained as per ASTM G99
standard with a dimensions of 30 mm in length and 8 mm in diameter. The wear parameter such as applied load
(10-40 N) and weight percentages (0.5-2.0 hBN) against 3000 m sliding distance was performed. The coefficient
of friction and wear resistance was measured with the help of Linear Variable Differential Transformer (LVDT).

3. Results and discussions

The SEM photographs are shown in figure 1. It is observed that hBN nanoparticles are clearly visible and
uniformly distributed in AA7150 matrix. The AA7150-1.5 wt% hBN reinforced composite shows better
distribution of nanoparticles in figure 1(c) as compared to other weight percentages of reinforcements.
Therefore, there is an enhancement in the hardness of the composites from 151.3 HV to 180.2 HV with an
increase in 19.1%, as well as UTS has been enhanced from 115.1 MPato 181.6 MPa, with an increase in 57.78%
of the nanocomposites and the similar type of results were noticed by the several researchers [13, 14]. Figure 2
shows the optical microstructure of monolithic alloy and hBN nano-particulates reinforced composites. From
figure 2, it is observed that the grain refinement of AA7150-hBN nanocomposites was increased with increase of
reinforcement content. This is mainly due to the uniform distribution of nanoparticles and less particle interface
distances which results in enhanced strength and hardness due to Hall-patch and Orowan strengthening
mechanism [15].

The Average Grain Size (AGS) can be measured by using Linear Intercept Method and Planimetric (Jeffries)
Method [16]. In this article Linear Intercept Method was used to find the average grain size along with principle
planes (Transfer and Longitudinal directions) of each microphotograph with the help of Image] software. The
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Figure 1. SEM images of AA7150-hBN nano particulates filled MMC with (a) 0.5 wt% hBN (b) 1.0 wt% hBN (c) 1.5 wt% hBN and (d)
2.0 wt% hBN.

measured values are calculated by equation (1) to get the size of grain. The calculated results for AA7150 (76 pym)
and 0.5%-2% nanocomposites are 53 pm, 33 pm, 17 ym, 26 um respectively.

Length of line

Number of grains

AGS =

()]

From the results, the finer grain size was confirmed in 1.5 wt% hBN nanocomposite matrix when compared
to their counter parts and exhibits superior mechanical properties. The corresponding results are shown in
figure 3 for better understanding.

The wear test was carried out for various compositions and worn out test specimen surfaces were analyzed
with SEM photographs for base material, 1.5 wt% and 2.0 wt% hBN reinforced nanocomposites at 40 N load, as
shown in figure 4. Visual observation of images confirm that the wear mechanism was the abrasive type and itisa
function ofload at constant Sliding Distance (SD) (3000 m). It was also observed that the wear height loss of the
matrix alloy and composites increased with an increase in applied load due to frictional temperature of the

3



I0OP Publishing

Mater. Res. Express 6 (2019) 116545 P Madhukar et al

1.5% hBN

Figure 2. Optical microstructures of (a) AA7150 and composites with (b) 0.5 wt% hBN (c) 1.0 wt% hBN (d) 1.5 wt% hBN (e) 2.0 wt%
hBN.

material softening at the couple surface which in turn leads to increase in wear loss [ 17]. However, increasing
wt% of hBN tends to decrease the wear loss because of solid-lubricating property and its slips over a speed [18].
Furthermore, the coefficient of friction increased by increasing load due to grain size improvement at higher
frictional temperatures [19], while it decreased with increasing wt% [20]. Similarly, the temperature increased
with increasing SD, load because of friction and decreased with increasing of wt%, due to hBN solid lubricant
property [11, 12]. The corresponding results for influence of load on wear, coefficient of friction and
temperature at 1.5 wt% hBN with constant sliding distance (3000 m) as well as sliding speed (2 m s ') as shown
in table 3.

The wear resistance of AA7150- hBN nanocomposites was observed to be better with increase in hBN
content as compared to base material. This can be attributed to the following reasons. The hardness of the
nanocomposites enhances with the content of hBN percentage up to 1.5 wt% and it leads to reduction of
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Figure 3. Reinforcement (wt% hBN) versus Strength.

wear loss of the nanocomposite material as well as the grain size. Increasing reinforcement particle beyond
this threshold leads to increased formation of clusters, agglomeration and void like defects [21]. This can be
observed in figures 1 and 2. The wear studies were examined by varying applied loads and reinforcement
content. The SEM photographs for the wear surfaces of base material, AA7150-1.5% hBN nanocomposite
(optimal properties) and AA7150-2.0% hBN nanocomposites (cluster /agglomerations) at higher load were
represented in figure 4. It was noticed that the wear debris and delamination of the AA7150 and its hBN
reinforced nanocomposites increased with the increase in hBN wt% [22, 23] on wear surface were identified.

Figures 5(a)—(c) shows the SEM photographs of tensile fractured surfaces at 200-micron scale for base
AA7150alloy, AA7150-1.5 wt% hBN and AA7150-2.0 wt% hBN reinforced nanocomposites and also
enlarged at 20-micron scale to analyze the fractured surfaces. Figure 5(a) shows a lot of grape-liked dendrites,
micro-cracks, micro-voids and the enlarged image attributes of the grain to grain detachment; it also shows
the nature of fracture as mixed kind of fracture. Figure 5(b) shows the image of AA7150-1.5 wt% hBN
reinforced nanocomposite which results in superior properties, with fewer voids, cracks, facets and grape-
liked dendrites. The enlarged scale shows the facets, step-wise dendrites and its attributes in B-N strong
bonding between adjacent layers of crystal structure, which elevate the surface energy as well as interface
friction required to detach. Figure 5(c) shows AA7150-2.0 wt% hBN reinforced nanocomposites SEM image
with larger cracks and voids as compared with other two, which may be attributed to the reduction in
strength and other properties.

4. Conclusions

AA7150-hBN nanocomposite has been fabricated successfully through ultrasonic assisted double stir cast
technique. The microstructure of monolithic, hBN reinforced nanocomposites were investigated through SEM
and OM and the following conclusions were made.

+ The OM studies state that the finer grains were observed in a composites containing 1.5 wt% hBN (17 pum) as
per grain refinement theory.

+ The SEM studies confirmed that the particle distribution at 1.5 wt% hBN nanocomposites is uniform when
compared to the other nanocomposites considered in the present study.

+ The worn out surfaces of SEM images indicates that 1.5 wt% hBN has low debris and less delamination due to
higher hardness of the nanocomposites and this leads to higher resistance to the wear.
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Figure 4. SEM Images of (a) AA7150 Alloy (b) 1.5 wt% hBN (c) 2.0 wt% hBN at 40 N load.

Table 3. Influence of applied load on wear, coefficient of friction and
temperature at 1.5 wt% hBN.

Applied
S. No. Load (N) Wear (1) Avg. COF Temperature (C°)
1 10 57 0.445208 40
2 20 87 0.461823 44
3 30 99 0.487902 47
4 40 130 0.496464 51

+ The SEM photographs of UTS test fractured surfaces imply that the increase of reinforcement particles beyond
threshold i.e., 1.5 wt% hBN leads to increased formation of clusters, agglomeration, cracks and void like
defects.
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Figure 5. SEM image of fracture surface (a) AA7150 (b) AA7150-1.5 wt% hBN (c) AA7150-2.0 wt% hBN.
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