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Abstract. In this paper, we study a problem of a non-constant entire function f that

shares a set S = {a, b, c} with its k-th derivative f (k), where a, b and c are any three distinct

complex numbers. We have found a gap in the statement of the main result of Chang-

Fang-Zalcman [10], and with the help of their method, we have generalize their result in

a more compact form. As an application, we generalize the famous Brück conjecture [9]

with the idea of set sharing.

1. Introduction, Definitions and Results

It is well known that Nevanlinna theory plays an important role in considering
the value distribution of meromorphic functions and non-trivial solutions of some
complex differential equations. A function f is called meromorphic if it is analytic
in the complex plane C except at isolated poles. In what follows, we assume that the
reader is familiar with the basic Nevanlinna Theory [18, 26]. It will be convenient
to let E denote any set of positive real real numbers of finite linear measure, not
necessarily the same at each occurrence. Let f and g be two meromorphic functions
having the same set of a-points with the same multiplicities, we then say that f
and g share the value a CM (counting multiplicities) and if we do not consider the
multiplicities then f and g are said to share the value a IM .

When a = ∞, the zeros of f − a means the poles of f .

Definition 1.1. For a non-constant meromorphic function f and any set S ⊂
C ∪ {∞}, we define
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Ef (S) =
∪
a∈S

{
(z, p) ∈ C× N : f(z) = a, with multiplicity p

}
,

Ef (S) =
∪
a∈S

{
(z, 1) ∈ C× {1} : f(z) = a

}
.

If Ef (S) = Eg(S) (resp. Ef (S) = Eg(S)) then we simply say f and g share the
set S Counting Multiplicities (CM) (resp. Ignoring Multiplicities (IM)).

If S contains one element only, then it coincides with the usual definition of
CM(IM) sharing of values.

In 1926, Nevanlinna first showed that a non-constant meromorphic function on
the complex plane C is uniquely determined by the pre-images, ignoring multiplic-
ities, of five distinct values (including infinity). A few years latter, he showed that
when multiplicities are taken into consideration, four points are enough and in that
case either the two functions coincide or one is the bilinear transformation of the
other one.

Recall that the spherical derivative of a meromorphic function f on a plane
domain is

f#(z) =
|f ′(z)|

1 + |f(z)|2
.

The sharing value problem between an entire function and its derivatives was
first studied by Rubel-Yang [25]. They proved that if a non-constant entire function
f and its derivative f ′ share two distinct finite numbers a, b CM , then f ≡ f ′.

In 1979, Mues-Steinmetz [23] improved the above theorem in the following man-
ner.

Theorem A.([23]) Let f be a non-constant entire function. If f and f ′ share two
distinct values a, b IM then f ≡ f ′.

Remark 1.1. Following example shows that the results of Rubel-Yang and Mues-
Steinmetz are not in general true when value sharing is replaced by set sharing.

Example 1.1. Let S =

{
a

3
,
2a

3

}
, where a(̸= 0) be any complex number. Let

f(z) = e−z + a, then Ef (S) = Ef ′(S) but f ̸≡ f ′.

So for the uniqueness of an entire function and its derivative sharing a set, the
cardinality of the range set should be at least three.

In this regard in 2003, using the properties of normal families, Fang-Zalcman
[14] obtained the following result.

Theorem B.([14]) Let S = {0, a, b}, where a, b are two non-zero distinct complex
numbers satisfying a2 ̸= b2, a ̸= 2b, a2 − ab + b2 ̸= 0. If for a non-constant entire
function f , Ef (S) = Ef ′(S), then f ≡ f ′.
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In order to generalize the range set in the above theorem, in 2007 Chang-Fang-
Zalcman [10] obtained the following result.

Theorem C.([10]) Let f be a non-constant entire function and let S = {a, b, c},
where a, b and c are distinct complex numbers. If Ef (S) = Ef ′(S), then either

(1) f(z) = Cez; or

(2) f(z) = Ce−z + 2
3 (a+ b+ c) and (2a− b− c)(2b− c− a)(2c− a− b) = 0; or

(3) f(z) = Ce
−1±i

√
3z

2 +
3± i

√
3

6
(a+ b+ c) and a2 + b2 + c2 − ab− bc− ca = 0,

where C is a non-zero constant.

Reamrk 1.2. We see from the next example that the conclusion of Theorem C
need not hold if the CM shared set S is replaced by an IM shared set.

Example 1.2.([10]) Let S = {−1, 0, 1} and f(z) = sin z or cos z. Clearly Ef (S) =
Ef ′(S) and f takes none of the forms (1)− (3) in Theorem C.

Remark 1.3. In Example 1.2, one may consider k-th derivative of f instead of
first derivative, when k is any odd positive integer to get the same conclusion.

Remark 1.4. We have found a little gap in the statement of Theorem C as follows.

(i) In the statement of the Theorem C, the author should require that “f be a
non-constant entire function having zeros of multiplicities ≥ 1”.

(ii) It is affirmed that f has zeros, so it is natural to see that the possible form
of the function should not be of the form f(z) = Cez in Theorem C as f has
no zero in this particular form.

From the above discussions, one may note that a non-constant entire function
f sharing an arbitrary set of three finite complex numbers a, b and c (CM) with its
first derivative, must have some specific form.

It is natural to ask the following question:

Question 1.1. Is it possible to extend Theorem C to k-th derivative of f ?

If the answer ofQuestion 1.1 is found to be affirmative, then it will be interesting
to investigate on the following question:

Question 1.2. What can we say about the possible forms of the function f ?

Since f and f (k) share the set S = {a, b, c}, one may observe that among all the
possible relationship between f and f (k), clearly f (k) ≡ f is the most obvious one.
So before going to state our main results, we want to discuss a natural question:
What is the general solution of f (k) ≡ f ? The natural answer is f(z) = Lθ(z) (see
[1, 6]) where we define Lθ(z) as follows

Lθ(z) = c0e
z + c1e

θz + c2e
θ2z + . . .+ ck−1e

θk−1z,(1.1)
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where ci ∈ C for i ∈ {0, 1, 2, . . . , k − 1} with ck−1 ̸= 0 and θ = cos

(
2π

k

)
+

i sin

(
2π

k

)
.

To answer all the above questions affirmatively is the main motivation of writing
this paper. We have tried to take care of the points mentioned in Remark 1.2.
Following is the main result of this paper.

Theorem 1.1. Let f be a non-constant entire function, having zeros of multiplicity
at least k and let S = {a, b, c}, where a, b and c are distinct complex numbers. If
Ef (S) = Ef(k)(S), then f takes one of the following forms:

(1) f(z) = Lθ(βz), where β is a root of the equation zk − 1 = 0,

(2) f(z) = Lθ(ηz) +
2
3 (a + b + c), where η is a root of the equation zk + 1 = 0

and (2a− b− c)(2b− c− a)(2c− a− b) = 0,

(3) f(z) = Lθ(ζz) +
3±i

√
3

6 (a + b + c), where ζ (̸= 1) is a root of the equation
z3k − 1 = 0 and a2 + b2 + c2 − ab− bc− ca = 0,

where Lθ(z) is defined in (1.1).

Remark 1.5. The conclusion (2) of Theorem 1.1 can not be omitted, following
example ensures this fact.

Example 1.3. Let k = 2, hence θ = −1. So we have η = ±i, and hence

Lθ(ηz) = c0e
ηz+c1e

θηz =
1

4

(
eiz + e−iz

)
,where c0 =

1

4
= c1. Let S =

{
a,

1

4
,
1

2
−a

}
,

where a ∈ C \ {1/4}. Let f(z) = 1

2
cos z +

1

2
= cos2

(z
2

)
, clearly it is of the form

f(z) = Lθ(ηz) +
2

3
(a + b + c). One can verify that Ef (S) = Ef ′′(S), and the

multiplicities of zeros of f(z) are at least 2.

2. Some Lemmas

We begin our investigation with the following lemmas, which are essential to
prove our main results.

Lemma 2.1.([13]) The order of an entire function having bounded spherical deriva-
tive on C is at most 1.

Lemma 2.2.([14]) Let F be a family of holomorphic functions in a domain D. Let
k be a positive integer. Let a, b and c be three distinct finite complex numbers and
M a positive number. If, for any f ∈ F, the zeros of f are of multiplicity ≥ k and
|f (k)(z)| ≤M whenever f(z) ∈ {a, b, c}, then F is normal in D.

Lemma 2.3.([15]) Let f be a non-constant meromorphic function of finite order ρ,
and ϵ > 0 a constant. Then there exists a set E ⊂ [0, 2π) which has linear measure
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zero, such that if ψ0 ∈ [0, 2π)− E, then there is a constant R0 = R0(ψ0) > 0 such
that for all z satisfying argz = ψ0 and |z| > R0, we have∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|k(ρ+ϵ−1).

Lemma 2.4. Let f be an entire function, and suppose that |f (k)(z)| is unbounded
on some ray arg z = θ. Then there exists an infinite sequence of points zn = rne

θ

where rn → ∞, such that f (k)(zn) → ∞ and∣∣∣∣ f(zn)

f (k)(zn)

∣∣∣∣ ≤ (1 + o(1))|zn|k(2.1)

as zn → ∞.

Proof. For k ≥ 1, one must have

f(zn) =

k−1∑
i=0

zin
(i)!

f (i)(0) +

{∫ zn

0

(k−1)−times︷ ︸︸ ︷∫ z

0

. . .

∫ z

0

f (k)(z)

k−times︷ ︸︸ ︷
dz . . . dz

}
.(2.2)

By applying the triangle inequality in (2.2), rest of the proof follows from the
proof of [16, Lemma 4, page. 421]. 2

Lemma 2.5.([22]) A class C of functions f meromorphic in a domain D ⊂ C is
normal in D if and only if f# is uniformly bounded on any compact subset of D
for f ∈ C.

Lemma 2.6.([20, 24]) Let f be an entire function of order at most 1 and k be a
positive integer. Then

m

(
r,
f (k)

f

)
= o(log r), as r → ∞.

Lemma 2.7. Let α be a non-constant entire function and a, b and c are three
distinct finite complex numbers. Then there does not exist an entire function f
having zeros of multiplicity ≥ k, satisfying the differential equation(

f (k) − a
) (
f (k) − b

) (
f (k) − c

)
(f − a)(f − b)(f − c)

= eα.(2.3)

Proof. Assume there exists an entire function f satisfying (2.3). Then we see that
|f (i)(z)| ≤ max{a, b, c} whenever f(z) ∈ {a, b, c}, i ∈ {1, 2, ..., k}. As the zeros of f
have multiplicity ≥ k, we have, by Lemma 2.2, that the family Fw = {fw : w ∈ C},
where fw(z) = f(w + z), is normal on the unit disc. Hence by Marty’s Theorem,
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we get that f#(w) = (fw)
#(0) is uniformly bounded for all w ∈ C. Therefore in

view of Lemma 2.1, we get that f has order at most 1.
From (2.3), we obtain α(z) = Az + B, where A and B are two constants. It is

clear that A ̸= 0, since α is non-constant.
Next we claim that abc ̸= 0. On contrary, let abc = 0. i.e., a = 0 or b = 0 or

c = 0. Without any loss of generality, we may assume that a = 0. It follows from
(2.3) that

f (k)
(
f (k) − b

) (
f (k) − c

)
f(f − b)(f − c)

= eAz+B.

Again we see that

f (k)
(
f (k) − b

) (
f (k) − c

)
f(f − b)(f − c)

=

(
f (k)

)3
f(f − b)(f − c)

−
(b+ c)

(
f (k)

)2
f(f − b)(f − c)

+
bcf (k)

f(f − b)(f − c)

=
f (k)

f

f (k)

f − b

f (k)

f − c
− b+ c

b− c

(
f (k)

f − b
− f (k)

f − c

)
+ bc

(
A1f

(k)

f
+

B1f
(k)

f − b
+

B1f
(k)

f − c

)
,

where A1,B1 and C1 are constants. So there exists A2,B2 and C2 such that

m

(
r,
f (k)(f (k) − b)(f (k) − c)

f(f − b)(f − c)

)
≤ A2 m

(
r,
f (k)

f

)
+B2 m

(
r,
f (k)

f − b

)
+ C2 m

(
r,
f (k)

f − c

)
+O(1).

Thus by Lemma 2.6, we deduce that

T (r, eAz+B) = m(r, eAz+B) = o(log r),

and this is not possible since A ̸= 0.
Therefore, we must have abc ̸= 0. We set

g(z) = f(z/A) i.e., g(k)(z) =
1

Ak
f (k)(z/A).(2.4)

Hence (2.4) and (2.3) mean that(
g(k) − a/Ak

) (
g(k) − b/Ak

) (
g(k) − c/Ak

)
(g − a)(g − b)(g − c)

≡ Cez,(2.5)

where C =
eB

A3k
̸= 0. We see that (2.5) can be written as(

g(k)
)3

+ C1

(
g(k)

)2
+ C2g

(k)

(g − a)(g − b)(g − c)
− Cez =

C3

(g − a)(g − b)(g − c)
,(2.6)
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where Cj are constants with C3 ̸= 0. With ϵ =
1

3
, Lemma 2.3 shows that there

exists a set E ⊂ [0, 2π) of measure zero such that for each ψ0 ∈ [0, 2π) − E, there
is a constant R0 = R0(ψ0) > 0 such that whenever arg z = ψ0 and |z| > R0,∣∣∣∣

(
g(k)

)3
+ C1

(
g(k)

)2
+ C2g

(k)

(g − a)(g − b)(g − c)

∣∣∣∣ ≤ K|z|,(2.7)

for some positive constantK. We may now suppose that π/2 and 3π/2 are contained
in the set E. Then [0, 2π) − E = E1 ∪ E2, where E1 = {θ ∈ [0, 2π) : cos θ > 0}
and E2 = {θ ∈ [0, 2π) : cos θ < 0}. Let θ ∈ E1, then by (2.6) and (2.7), we get for
sufficiently large r,∣∣∣∣ C3

(g(reiθ)− a) (g(reiθ)− b) (g(reiθ)− c)

∣∣∣∣
=

∣∣∣∣
(
g(k)(reiθ)

)3
+ C1

(
g(k)(reiθ)

)2
+ C2g

(k)(reiθ)

(g(reiθ)− a) (g(reiθ)− b) (g(reiθ)− c)
− Cere

iθ

∣∣∣∣
≥ |C|er cos θ −Kr

→ ∞, as r → ∞.

It follows that

g(reiθ) → a, b or c, as r → ∞.(2.8)

Let θ ∈ E2. We claim that |g(k)(reiθ)| is bounded as r → ∞. On contrary, we
suppose that |g(k)(reiθ)| is unbounded as r → ∞. Then by Lemma 2.4, there exists
a sequence rn → ∞ such that |g(k)(reiθ)| → ∞ and∣∣∣∣g(reiθ)g(k)(reiθ)∣∣∣∣ ≤ (1 + o(1))rkn.(2.9)

With |g(k)(rneiθ)| → ∞, we note that∣∣∣∣
(
g(rne

iθ)− a
) (
g(rne

iθ)− b
) (
g(rne

iθ)− c
)(

g(k)(rneiθ)
)3

+ C1

(
g(k)(rneiθ)

)2
+ C2g(k)(rneiθ)

∣∣∣∣ ≤ (1 + o(1))r3kn .(2.10)

Since |g(k)(rneiθ)| → ∞, so it follows from (2.6) that∣∣∣∣
(
g(rne

iθ)− a
) (
g(rne

iθ)− b
) (
g(rne

iθ)− c
)

r3kn C3

∣∣∣∣(2.11)

=

∣∣∣∣
(
g(k)(rne

iθ)
)3

+ C1

(
g(k)(rne

iθ)
)2

+ C2g
(k)(rne

iθ)− C3

r3kn |C3||C|erneiθ
∣∣∣∣

= r−3k
n e−rn cos θ |

(
g(k)(rne

iθ)
)3

+ C1

(
g(k)(rne

iθ)
)2

+ C2g
(k)(rne

iθ)− C3|
|C3C|

→ ∞.
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Thus from (2.6), (2.10) and (2.11), we get

1− o(1)

≤
∣∣∣∣r3kn

(
g(k)(rne

iθ)
)3

+ C1

(
g(k)(rne

iθ)
)2

+ C2g
(k)(rne

iθ)− C3

(g(rneiθ)− a) (g(rneiθ)− b) (g(rneiθ)− c)

∣∣∣∣
≤

∣∣∣∣ r3kn C3

(g(rneiθ)− a) (g(rneiθ)− b) (g(rneiθ)− c)

∣∣∣∣+ |C|r3kn ern cos θ

→ 0,

which is absurd. Hence |g(k)(rneiθ)| is bounded as r → ∞ for each θ ∈ E2. For a
positive integer k, we can always write

g(reiθ) =
k−1∑
i=0

zin
(i)!

f (i)(0) +
(
eiθ

)k {∫ r

0

(k−1)−times︷ ︸︸ ︷∫ t

0

. . .

∫ t

0

f (k)(z)

k−times︷ ︸︸ ︷
dt . . . dt

}
.

So we must have

|g(reiθ)| ≤
∣∣∣∣ k−1∑
i=0

zin
(i)!

f (i)(0)

∣∣∣∣+ ∣∣∣∣{ ∫ r

0

(k−1)−times︷ ︸︸ ︷∫ t

0

. . .

∫ t

0

f (k)(z)

k−times︷ ︸︸ ︷
dt . . . dt

}∣∣∣∣(2.12)

≤
∣∣∣∣ k−1∑
i=0

zin
(i)!

f (i)(0)

∣∣∣∣+Mrk,

where M = M(θ) is a positive constant depending on θ.
Hence by (2.8) and (2.12), for every θ ∈ [0, 2π) − E, there exists a positive

constant L = L(θ) such that for z = reiθ with r > r0,∣∣∣∣g(z)zk

∣∣∣∣ ≤ L.(2.13)

Since the order of g is at most 1, it follows from (2.8), (2.13), the Phragěn-
Lindelöf Theorem, and Liouville’s Theorem, that g is a polynomial of degree at
most k, which is impossible by (2.5). This completes the proof. 2

Lemma 2.8. Let S = {a, b, c} where a, b and c be any three distinct finite complex
numbers and A a non-zero constant. If Ef (S) = Ef(k)(S), where f is an entire

function having zeros of multiplicities ≥ k and satisfying f (k) ̸≡ 0 and(
f (k) − a

) (
f (k) − b

) (
f (k) − c

)
(f − a)(f − b)(f − c)

≡ A,(2.14)

then f must take one of the following forms:
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(1) f(z) = Lθ(βz), where β is a root of the equation zk − 1 = 0,

(2) f(z) = Lθ(ηz) +
2

3
(a + b + c), where η is a root of the equation zk + 1 = 0

and (2a− b− c)(2b− c− a)(2c− a− b) = 0,

(3) f(z) = Lθ(ζz) +
3±i

√
3

6 (a + b + c), where ζ (̸= 1) is a root of the equation
z3k − 1 = 0 and a2 + b2 + c2 − ab− bc− ca = 0,

where C is a non-zero constant.

Proof. From the proof of Lemma 2.7, we note that f has order at most 1. Since
f and f (k) have the same order and f having zeros of multiplicities ≥ k satisfying
f (k) ̸≡ 0 and also Ef (S) = Ef(k)(S), so one can deduce that the form is

f (k)(z) = c0α
keαz + c1α

keαθz + . . .+ ck−1α
keαθ

k−1z = αkLθ(αz), (say)(2.15)

where ci ∈ C, for i ∈ {0, 1, 2, . . . , k − 1} with ck−1 ̸= 0, α ∈ C− {0},

θ = cos

(
2π

k

)
+ i sin

(
2π

k

)
and

Lθ(αz) = c0e
αz + c1e

αθz + . . .+ ck−1e
αθk−1z.

Integrating (2.15) k-times, we get

f(z) = Lθ(αz) + Qk−1(z),(2.16)

where Qk−1 is a polynomial of degree ≤ k − 1.
Using (2.15) and (2.16), we get from (2.14)

(α3k −A) (Lθ(αz))
3
+

(
L1α

2k − 3AQk−1 −AL1

)
(Lθ(αz))

2
(2.17)

+
(
L2α

k − 3AQ2
k−1 − 2AL1Qk−1 −AL2

)
Lθ(αz)

+
(
L3 −AQ3

k−1 −AL1Q
2
k−1 −AL2Qk−1 −AL3

)
≡ 0,

where L1 = −(a+ b+ c), L2 = ab+ bc+ ca and L3 = −abc. It follows that

α3k = A,(2.18)

L1α
2k = A(3Qk−1 + L1),(2.19)

L2α
k = A(3Q2

k−1 + 2L1Qk−1 + L2),(2.20)

L3 = A(Q3
k−1 + L1Q

2
k−1 + L2Qk−1 + L3).(2.21)

We now discuss the following three possible cases.
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Case 1. Let α ∈ {z : zk − 1 = 0}. Then from (2.18) and (2.19), we get A = 1 and
Qk−1 = 0. Thus we see that

f(z) = Lθ(βz),

where β is a root of the equation zk − 1 = 0.

Case 2. Let α ∈ {z : zk+1 = 0}. Then from (2.18) and (2.19), we see that A = −1
and Qk−1 = −2

3L1. It follows from (2.21) that

2L3
1 − 9L1L2 + 27L3 = 0

which in turn implies that

(2a− b− c)(2b− c− a)(2c− a− b) = 0.

In this case, we get

f(z) = Lθ(ηz) +
2

3
(a+ b+ c),

where η is a root of the equation zk + 1 = 0.

Case 3. Let α ̸∈ {z : zk − 1 = 0} ∪ {z : zk +1 = 0}. Then by (2.18) and (2.19), we
get

Qk−1 =
1− αk

3αk
L1.(2.22)

Then by (2.18), (2.20) and (2.22), we obtained

L2 =
(L1)

2

3
.(2.23)

Next by (2.18), (2.21), (2.22) and (2.23), we also get

(1− α3k)L3 =
1

27
(1− α3k)L3

1.(2.24)

Subcase 3.1. If α3k ̸= 1, then L3 = (L1)
3/27. This with (2.23) shows that

a = b = c, which is not possible.

Subcase 3.2. Hence α3k − 1 = 0. i.e., αk =
−1± i

√
3

2
. Thus we have Qk−1 =

−3± i
√
3

6
L1. Simplifying (2.23), we get a2 + b2 + c2 − ab− bc− ca = 0.

Thus we have

f(z) = Lθ(ζz) +
3± i

√
3

6
(a+ b+ c),

where ζ( ̸= 1) is a root of the equation z3k − 1 = 0. 2
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3. Proof of Theorem 1.1

Since Ef (S) = Ef(k)(S), therefore it is clear that(
f (k) − a

) (
f (k) − b

) (
f (k) − c

)
(f − a)(f − b)(f − c)

≡ eα(z),(3.1)

where α is an entire function. We note that by Lemma 2.7, α is a constant. Then
we set A = eα. Thus (3.1) changes to(

f (k) − a
) (
f (k) − b

) (
f (k) − c

)
(f − a)(f − b)(f − c)

≡ A.(3.2)

Next we discuss the following two cases.

Case 1. If f (k) ̸= 0, then by Lemma 2.8, we see that f takes one of the three forms
(1)-(3). So we are done.

Case 2. If f (k) vanishes at some point z0 ∈ C. i.e., f (k)(z0) = 0.
Differentiating both sides of (3.2), we get{

3
(
f (k)

)2

− 2(a+ b+ c)f (k) + (ab+ bc+ ca)

}
f (k+1)(3.3)

≡ A

{
3f2 − 2(a+ b+ c)f + (ab+ bc+ ca)

}
f ′.

Let f (k)(z0) = 0 and k ≤ n. So we may assume

f(z) = f(z0) +An(z − z0)
n + . . .

Clearly we have f (k)(z) = Bn(z− z0)n−k + . . . and f ′(z) = nA(z− z0)n−1+ . . ..
We see that L.H.S of (3.3) vanishes at z0 with order n − k while R.H.S of (3.3)
vanishes with the order at least n− 1, which is not possible.

4. Some Applications

In 1996, the following conjecture was proposed by Brück [9].

Conjecture 4.1.([9]) Let f be a non-constant entire function. Suppose that ρ1(f)
is not a positive integer or infinite. If f and f ′ share one finite value a CM , then

f ′ − a

f − a
= c,

for some non-zero constant c, where ρ1(f) is the first iterated order of f which is
defined by

ρ1(f) = lim sup
r→∞

log log T (r, f)

log r
.
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Many authors (for the case of differences see [19, 21] and for the cases of deriva-
tives or differential polynomials see [2, 3, 4, 5, 6, 7, 8] and [11, 12, 17]) have studied
the conjecture under some additional conditions. But the main conjecture is still
open. In this direction, it is interesting to ask the following two questions.

Question 4.1. Does the conjecture hold if one considers a set having three arbitrary
finite complex numbers instead of a value ?

Question 4.2. Is it possible to replace first derivative f ′ by a more general deriva-
tive f (k) ?

Remark 4.1. Note that Lemma 2.8 answers the above questions in some sense.

Acknowledgements. The author would like to thank the referees for their con-
structive comments that led to better presentation of the paper.
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