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Abstract. In the paper, we have investigated on a conjecture posed by
Chen and Yi (Results Math 63:557–565, 2013) concerning the uniqueness
problem of meromorphic functions f sharing three distinct values with
their difference Lc(f). We have proved the conjecture for finite ordered
meromorphic functions. Some examples have been exhibited in the paper
to show that the main result is true also for the meromorphic function of
infinite order, but we are unable to prove our results for the function of
infinite order, and hence we conjecture it. The main results in the paper
also generalized a result of Zhang and Liao (Sci China Math 57(10):2143–
2152, 2014). This research also shows that when a meromorphi function
f satisfies a certain relation of the type Lc(f) ≡ f , then it can be found
the class of all such functions.
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1. Introduction, Definitions and Results

In this paper, the term “meromorphic (resp. entire)” will always mean mero-
morphic (resp. entire) in the whole complex plane C. Meromorphic functions
are always non-constant, unless specifically stated otherwise. We shall adopt
the standard notations of the Nevanlinna’s value distribution theory of mero-
morphic functions such as T (r, f), m(r, f), and N(r, f) (N(r, f)) from [10,22].
Throughout the paper, we denote C

∗ by C
∗ := C�{0}.

We say that two meromorphic functions f and g share the value aCM
(resp., IM), whenever f − a and g − a have the same set of zeros with the
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same multiplicities (resp. ignoring multiplicities). Also we say that f and g
share the value ∞ CM(resp., IM) whenever 1/f and 1/g share the value 0 CM

(resp., IM).
It is well known that a pair of meromorphic functions f and g would be

identically equal to each other if f and g share five distinct values IM. This
is the famous Nevanlinna’s Five-value Theorem. Also the Nevanlinna’s Four-
value Theorem states that if a pair of meromorphic functions f and g share
four value CM, then f is a bilinear transformation of g. The beauty of these
results lies on the fact that it has no counter part in the real function theory.
The study will be more interesting if the second function g is related with f .

The condition “f and g share four values CM” has been weakened to “f
and g share two values CM and two values IM” by Gundersen [6,7], as well
as Mues [16]. But whether the condition can be weakened to “f and g share
three values IM and one value CM” is still open.

In 1976, Rubel and Yang [18], investigated on the uniqueness of the entire
function when sharing two values a, b with its derivative by proving the fol-
lowing classical result.

Theorem A [18]. Let f be a non-constant entire function. If f and f ′ share
two distinct finite values a, b CM , then f ≡ f ′.

It was Brück [2] who investigated further on the entire function sharing
one value with its first derivative and posed the following conjecture.

Conjecture 1.1 [2]. Let f be a non-constant entire function satisfying the super
order ρ2(f) < ∞, being not a positive integer. If f and f ′ share one finite value
a CM , then f ′ − a ≡ c (f − a) holds for some constants c �= 0.

We use the standard notations of the Nevanlinnas value distribution the-
ory of meromorphic functions (see [10,22]). In addition with this, we use the
notation ρ(f) to denote the order growth of f . Finally, ρ2(f) denoted the
hyper-order (see [20]) of f which is defined by

ρ2(f) = lim sup
r→∞

log log T (r, f)
log r

.

Recently, the difference analogue of the lemma on the logarithmic deriv-
ative, and hence Nevanlinna theory for the differences of a meromorphic func-
tion f have been studied by many researchers [1,3,8,9,11–13] focusing on the
uniqueness problem of meromorphic functions sharing some values with their
difference operators or shifts. Now-a-days investigating on the problems of
sharing values by a meromorphic functions with its differences or shift become
an extensive subfield of the modern uniqueness theory. It is well known that
Δcf can be considered as the difference counterpart of f ′ in Theorem A. In
this direction, we mention an interesting result here.

Theorem B [4]. Let f be a finite order transcendental entire function which
has a finite Borel exceptional value a, and let c ∈ C

∗ be a constant such that
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f(z + c) �≡ f(z). If Δcf(z) = f(z + c) − f(z) and f(z) share the value a CM,
then a = 0, and

Δcf ≡ A f(z),

where A is a non-zero constant.

Remark 1.1. Clearly Theorem B shows that if f has a non-zero finite Borel
exceptional value a, then for c �= 0, the value a is not shared by Δcf and f(z).

Following example clears this fact.

Example 1.1. Let f(z) = bez +a has the Borel exceptional value a. Clearly, for
any c �= 2kπi, k ∈ Z, the vale a is not shared by f(z + c) − f(z) = b(ec − 1)ez

and f(z).

In this direction, one natural question arises as follows.

Question 1.1. Is it possible to omit the condition “f has a finite Borel excep-
tional value” in Theorem B?

The following result, which answers the above question affirmatively, and
is also similar to the assumption in Brück conjecture, in which the order of
growth ρ(f) is not an integer or infinite.

Theorem C [4]. Let f be a transcendental meromorphic function such that
its order of growth ρ(f) is not an integer or infinite, and c ∈ C

∗ such that
Δcf �≡ 0. If Δcf and f(z) share three distinct values a, b, ∞ CM, then
Δcf ≡ f(z).

Recently Zhang and Liao [23] proved a result by showing that the above
conjecture is true when f is an entire function and Theorem A is still valid
when f ′ is replaced by Δcf . Following is the result.

Theorem D [23]. Let f(z) be a transcendental entire function of finite order,
and a, b be two distinct constants. If Δ1f(�≡ 0) and f share a, bCM, then
Δ1f ≡ f . Furthermore, f(z) must be of the following form f(z) = 2zh(z),
where h(z) is a periodic entire function with period 1.

In [23], authors gave the following example to show that in Theorem D,
sharing two distinct values CM can not be relaxed to sharing one value CM.

Example 1.2. Let f(z) = eπiz, one can check that f and Δcf share 0 CM but
f �≡ Δcf .

The next two examples show that, in Theorem D, it is not necessary that
the function has to be of finite order.

Example 1.3. Let f(z) = 2
z

ec sin(2πz)+d, where c(�= 0), d ∈ C. Clearly Δ1f and
f share any two distinct values a and b CM, and also we see that Δ1f ≡ f .
Note that f has the form f(z) = 2

z

h(z), where h(z) = ec sin(2πz)+d is a periodic
entire function with period 1.
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Example 1.4. Let f(z) = 2
z e2πiz − 1
ec sin(2πz)+d

, where c(�= 0), d ∈ C. Clearly Δ1f

and f share any two distinct values a and b CM, and also we see that Δ1f ≡ f .

Note that f has the form f(z) = 2
z

h(z), where h(z) =
e2πiz − 1

ec sin(2πz)+d
is a periodic

entire function with period 1.

For the generalization of Δcf = f(z + c) − f(z) further, we now define
the difference operator of an entire (meromorphic) function f as Lc(f) :=
c1f(z + c) + c0f(z), where c0, c1 ∈ C

∗. Clearly for the particular choice of the
constants c0 = −1 and c1 = 1, we get back Lcf = Δcf .

Since no attempts, till now, have so far been made by any researchers
investigating on the uniqueness problem when an entire function f and its
difference Lc(f) sharing a, b CM, and stressing to find the class of all such
entire functions, satisfying the relation Lc(f) ≡ f .

Therefore, in this paper, we are mainly interested in the further general-
ization of Theorem D by replacing Δ1f by a more general setting Lc(f). We
have also stressed to find the class of all the functions satisfying the relation
Lc(f) ≡ f .

Following is a main result in this paper.

Theorem 1.1. Let f be a transcendental entire function of finite order, and a, b
be two distinct constants. If Lc(f)(�≡ 0) and f share a, b CM, then Lc(f) ≡ f .
Furthermore, f(z) must be of the following form

f(z) =

⎧
⎨

⎩

(
1 − c0

c1

) z
c

h(z), when c0 + c1 �= 1

h(z), when c0 + c1 = 1,

where h(z) is a periodic entire function with period c.

Remark 1.2. One can see that when Lc(f) ≡ f with the condition c1 + c0 = 1,
then the function f is a periodic with period c.

Towards the improvement of the Theorem D, one may ask the following
natural question.

Question 1.2. Is Theorem D true for transcendental meromorphic function
also?

Followings are two supportive examples towards the answer of the Ques-
tion 1.2 affirmatively.

Example 1.5. Let f(z) = 2
z
c

sin( 2πz
c )

cos( 2πz
c )−1

, where c ∈ C
∗. Clearly Δcf and f

share any two distinct complex numbers a and b CM satisfying Δcf ≡ f .

Example 1.6. Let f(z) = 2
z
c

a+b

exp( 2πiz
c )+a+b

, where c ∈ C
∗. Clearly Δcf and f

share any two distinct complex numbers a and b CM satisfying Δcf ≡ f .
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From the above two examples we see that, if one considers a meromorphic
function instead of entire, then to get the desired relation, the functions f and
Δcf(�≡ 0) must have to share ∞ CM.

In [4], Chen and Yi conjectured that the conclusion of Theorem C still
holds if the restriction of ρ(f) in Theorem C is omitted. An worth noticing
fact is that Theorem D shows that the conjecture is correct if f is an entire
function of finite order. Now-a-days further investigation on this conjecture is
going on, and many researchers are engaged to solve the conjecture.

Recently, Lü and Lü [14] studied the conjecture, and proved it holds
for the meromorphic functions of finite order also, and obtained the following
result.

Theorem E [14]. Let f be a transcendental meromorphic function of finite
order, and let Δc(f) = f(z + c) − f(z) (�≡ 0), where c �= 0 is a finite number.
If Δcf and f share three distinct values a, b, ∞ CM, then f ≡ Δcf .

Remark 1.3. We see that Examples 1.5 and 1.6 are the supportive examples
for the validity of Theorem E.

So we want to investigate further Theorem E for a meromorphic functions
f and its difference Lc(f).

Therefore, relevant to this investigation, our aim is to study Theorems
C, D and E, replacing Δcf by Lc(f) and also to find the class of the functions.
Apart from this, since our investigation is on the uniqueness problem between
a meromorphic function f(z) and its shift f(z+c) or differences Δcf or Lc(f),
so it is quite natural to investigate on the periodicity of the function f(z)
under some suitable condition. Clearly, when Δcf ≡ f , the function could not
be a periodic function.

Following is another result in the paper which improved Theorems C, D
and E.

Theorem 1.2. Let f be a transcendental meromorphic function of finite order,
and a, b be two distinct constants. If Lc(f)

(
�≡ d1eα+d2

d3eβ+d4

)
where dj ∈ C and

α, β are polynomials in z, and f share a, b and ∞ CM, then Lc(f) ≡ f .
Furthermore, f(z) must be of the following form

f(z) =

⎧
⎨

⎩

(
1 − c0

c1

) z
c

g(z), when c0 + c1 �= 1

g(z), when c0 + c1 = 1,

where g(z) is a periodic meromorphic function with period c.

The following examples ensure about the existence of functions which
satisfy the conditions of Theorem 1.2.
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Example 1.7. Let f(z) = ez

e

2πiz

log( 1−c0
c1 ) −1

, where c1, c2 ∈ C
∗ with c0 + c1 �= 1.

Clearly f is a transcendental meromorphic function (with ρ(f) = 1 < ∞)
which shares any a, b and ∞ CM , and hence Lc(f) ≡ f , when ec = 1−c0

c1
.

Example 1.8. Let f(z) = ez e

sin

⎛

⎜
⎝

2πz

log( 1−c0
c1 )

⎞

⎟
⎠

e

2πiz

log( 1−c0
c1 ) −1

, where c1, c2 ∈ C
∗ with c0 + c1 �= 1.

Clearly f is a transcendental meromorphic function (with ρ(f) = ∞) which
shares any a, b and ∞ CM, and hence Lc(f) ≡ f , when ec = 1−c0

c1
.

From the Examples 1.7 and 1.8, one can see that the assumptions “the
order of growth ρ(f) is finite” in Theorem 1.2 and “the order of growth ρ(f)
is not an integer or infinite” in Theorem C, can be omitted.

Remark 1.4. We observe that in Theorem 1.2 when c0+c1 = 1 with Lc(f) ≡ f ,
the function f(z) would be a c-periodic meromorphic function.

Following are some supportive example of Remark 1.4.

Example 1.9. Let f(z) = esin z+e− sin z

e2iz−1 . Then Lπ(f) = f(z), when c0 + c1 = 1.

Example 1.10. For c ∈ C
∗, suppose f(z) =

e2iz cos( 2zπ
c )

sin( 2zπ
c )−cos( 2zπ

c ) . Then Lc(f)

= f(z), when c0 + c1 = 1.

Example 1.11. Let f(z) = a e2iz+b tan(z)
c tan(z)+d , where a, b, c, d ∈ C

∗. Then Lπ(f)
= f(z), when c0 + c1 = 1.

The next example shows that CM sharing can not be relaxed to IM
sharing in our main result.

Example 1.12. Let f(z) = aesin z, where a ∈ C
∗ and we choose the constants

c0 = 1
2 = c1. One can check that f and Lπ(f) = a

(esin z)2+1

2esin z share the values
−a, a and ∞ IM , and we see that neither Lπ(f) ≡ f nor f has the specific
form.

We have the following corollary.

Corollary 1.1. Let f be a transcendental meromorphic function of finite order,
and a, b be two distinct constants. If Δcf(�≡ 0) and f share a, b and ∞ CM,
then Δcf ≡ f . Furthermore, f(z) must be of the following form f(z) = 2

z
c h(z),

where h(z) is a periodic meromorphic function with period c.
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2. Some Lemmas

In this section, we are going to discuss some lemmas, which we will use fre-
quently to prove our main result.

Lemma 2.1 [5]. Let f be a meromorphic function with a finite order ρ, and c
be a non-zero constant. Then for any ε > 0, we have

m

(

r,
f(z + c)

f(z)

)

= O
(
rρ−1+ε

)
. (2.1)

The Eq. (2.1) in which ρ is the (finite) order of f , and ε > 0, implies

m

(

r,
f(z + c)

f(z)

)

= S(r, f),

possibly outside a set of finite logarithmic measure.

Lemma 2.2 [15,19]. If R(f) is rational in f and has small meromorphic coef-
ficients, then

T (r,R(f)) = degf (R)T (r, f) + S(r, f).

Lemma 2.3 [5]. Let f be a transcendental meromorphic function with finite
order ρ, and c be a non-zero constant. Then for each ε > 0, we have

T (r, f(z + c)) = T (r, f) + O
(
rρ−1+ε

)
+ O (log r) , i.e.,

T (r, f(z + c)) = T (r, f) + S(r, f),

possibly out side of a finite logarithmic measure.

Lemma 2.4 [21]. Suppose that f1, f2, . . . , fn (n � 2) be meromorphic functions
and g1, g2, . . . , gn be entire functions satisfying the following conditions:

(i)
n∑

j=1

fj(z)egj(z) ≡ 0;

(ii) gj − gk are not constants for 1 � j < k � n;
(iii) for 1 � j � n, 1 � l < k � n, T (r, fj) = 0{T (r, egl−gk)} (r → +∞, r �∈

E).

Then fj ≡ 0, for j = 1, 2, . . . , n.

Lemma 2.5. Let f be a non-constant meromorphic function such that f and
Lc(f) = c1f(z + c) + c0f(z) share a, b and ∞CM where c, c0, c1(�= 0) ∈ C

∗,
then f is not a rational function.

Proof. Our proof will be based on the method of contradiction. Let if possible
f be a rational function. Then f(z) = P (z)

Q(z) where P (z) and Q(z) are two
polynomials relatively prime to each other and P (z)Q(z) �≡ 0. We now define
the sets E(0, P ) = {z : P (z) = 0} and E(0, Q) = {z : Q(z) = 0}.
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Thus we have

E(0, P ) ∩ E(0, Q) = φ (2.2)

Therefore

c1f(z + c) + c0f(z) = c1
P (z + c)
Q(z + c)

+ c0
P (z)
Q(z)

=
c1P (z + c)Q(z) + c0P (z)Q(z + c)

Q(z + c)Q(z)

=
P1(z)
Q1(z)

, (say)

where P1(z) and Q1(z) are two relatively prime polynomials and P1(z)Q1(z)
�≡ 0.

Again since E(a, f) = E(a, c1f(z + c) + c0f(z)) and f is a rational func-
tion, then there must exists a polynomial h(z) such that

c1f(z + c) + c0f(z) − a = (f − a)h(z).

i.e.,
c1P (z + c)Q(z) + c0P (z)Q(z + c)

Q(z + c)Q(z)
− a ≡

(
P (z)
Q(z)

− a

)

h(z). (2.3)

Case 1. Let P (z) is non-constant.
Then by the Fundamental Theorem of Algebra, there exists z0 ∈ C such

that P (z0) = 0. Then from (2.3), we get

c1
P (z0 + c)
Q(z0 + c)

≡ (1 − h(z0))a. (2.4)

Subcase 1.1. Let a = 0.
Then from (2.4), we see that P (z0 + c) = 0. Then we can deduce from

(2.2) that P (z0+mc) = 0 for all positive integer m. However, this is impossible,
and hence we conclude that the polynomial P (z) is a non-zero constant.
Subcase 1.2. Let a �= 0. Then from (2.4), we get

P (z0 + c) ≡ a

c1
(1 − h(z0))Q(z0 + c).

Next proceeding exactly same way as done in above, we can deduce that

P (z0 + mc) ≡ a

c1
(1 − h(z0))Q(z0 + mc). (2.5)

From (2.4) and (2.5), we see that

P (z0 + c)
Q(z0 + c)

=
P (z0 + mc)
Q(z0 + mc)

, for all positive integers m,

which contradicts the fact that E(0, P ) ∩ E(0, Q) = φ.

Therefore, we see that f(z) takes the form f(z) =
d

Q(z)
, where P (z) =

d = constant (�= 0).
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Case 2. Let Q(z) be non-zero constant.
Now

c1f(z + c) + c0f(z) =
c1d Q(z) + c0d Q(z + c)

Q(z + c)Q(z)
. (2.6)

Since E(b, f) = E(b, c1f(z + c) + c0f(z)), then there exists a polynomial
h1(z) such that c1f(z + c) + c0f(z) − b = (f − b)h1(z). i.e.,

c1 Q(z) + c0Q(z + c) ≡ d − bQ(z)
d

h1(z)Q(z + c). (2.7)

Since Q(z) and hence Q(z + c) be non-constant polynomials, so by the
Fundamental Theorem of Algebra, there exist z0 and z1 such that Q(z0) = 0 =
Q(z1 + c).
Subcase 2.1. When Q(z0) = 0, then from (2.7), we see that h1(z0) = −c0

d
,

which is absurd.
Subcase 2.2. When Q(z1 + c) = 0, then from (2.7), we get Q(z1) = 0, which is
not possible.

Thus we conclude that Q(z) is a non-zero constant, say d2. So we have

f(z) =
d

d2
, a constant, which is a contradiction.

This completes the proof. �
Lemma 2.6. Let f be an entire function and Lc(f) = c1f(z + c) + c0f(z) be
such that

Lc(f) − a

f − a
≡ eα and

Lc(f) − b

f − b
≡ eβ , (2.8)

where ab �= 0, and α(z) = αnzn + αn−1z
n−1 + · · · + α1z + α0 and β(z) =

βmzm +βm−1z
m−1 + · · ·+β1z +β0, αn(�= 0), . . . , α0 and βm(�= 0), . . . , β0 ∈ C,

then n = m and |αn| = |βm|.
Proof. Without any loss of generality, we may assume that a = 1, and set
g := f − a. Then (2.8) becomes

Lc(g) − 1 = g(z)eα(z) − (c0 + c1). (2.9)

Differentiating both sides of (2.9), we get

eα(z) =
c1g

′(z + c) + c0g
′(z)

g(z)α′(z) + g′(z)
. (2.10)

Also it follows from (2.9) that

eα(z) =
c1g(z + c) + c0g(z) + D

g(z)
, (2.11)

where D = c1 + c0 − 1.
By combining (2.10) and (2.11), it follows that

G(z)g(z) − D
(

α′(z) +
g′(z)
g(z)

)

≡ 0, (2.12)
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where G(z) can be found as follows

G(z) =
c1g

′(z + c)
g(z)

− c1g
′(z)g(z + c)

g2(z)
− c1α

′(z)g(z + c)
g(z)

− c0α(z).

If we choose c1+c0 = 1 i.e., D = 0, then from (2.12) we have G(z)g(z) = 0,
and this implies that G(z) = 0 or g(z) = 0. If g(z) = 0, then one can have
f(z) = a, a constant, which is possible. So we must have G(z) = 0.

Now on simplification, we obtained

c1

[

g(z)g′(z + c) − g′(z)g(z + c)
]

= g(z)
[

c1α
′(z)g(z + c) + c0g(z)α(z)

]

.

(2.13)

Since c1 + c0 = 1, so from (2.9), we see that

eα(z) =
Lc(g)

g
i.e., g(z + c) =

1
c1

(
eα(z) − c0

)
g(z). (2.14)

It is clear from (2.14) that Lc(g) and g share the value 0 CM . One can
also check that if g(z) has a zero at z = z0 (say), then g(z + c) must have the
same zero at z = z0, otherwise, we see from (2.14) that eα(z) would have pole
at z = z0, which is a contradiction.

Regarding the common zeros of g(z) and g(z + c), we have only three
possible cases.

(a) When g(z) is periodic i.e., g(z + c) = g(z) for all z ∈ C.
(b) When g(z) is non-periodic but g(z) and g(z + c) have common zeros

with same multiplicities.
(c) When g(z) is non-periodic but g(z) and g(z + c) have common zeros

with different multiplicities
Case a. Suppose that g(z) is periodic. Then, we have g(z+c) = g(z) and hence
g′(z + c) = g′(z). With this, we see that g(z)g′(z + c) − g′(z)g(z + c) = 0, and
since g(z) �≡ 0, hence it follows from (2.13) that

c1α
′(z) + c0α(z) = 0. (2.15)

The non-trivial solution of the Eq. (2.15) is α(z) = k e− c0
c1

z, where k
is some non-zero complex number. This contradicts the fact that α(z) is a
polynomial in z. Again, α(z) being a solution of (2.15), has to be 0, which
again contradicts the assumption that α(z) is non-zero.

Case b. Let g(z) is non-periodic but g(z) and g(z + c) have zeros with same
multiplicities. Let z0 be a common zero of g(z) and g(z+c) of same multiplicity
p � 1.

First we claim that z0 can not be a zero of the polynomial α(z). On
contrary, let z0 be a zero of α(z) of multiplicity q(� 1). It follows from (2.13)
that z0 will be a zero of the left side of (2.13) with multiplicity 2p− 1 whereas
that of the right side of (2.13) is 2p+(q−1). In order to have the same zeros with
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same multiplicities of both the sides of (2.13), we must have 2p−1 = 2p+(q−1),
and we see that q = 0, which is a contradiction.

Since z0 could not be a zero of α(z), hence we see from (2.13), z0 will be
a zero of left side of (2.13) with multiplicity 2p − 1 but that of the right side
of (2.13) is 2p, which is a contradiction.

Case c. Let g(z) is non-periodic but g(z) and g(z + c) have common zeros with
different multiplicities. Let z0 would be a zero of g(z) with multiplicity p(� 1)
and a zero of g(z + c) with multiplicity q(� 1) and p �= q.

Now z0 would be a zero of Lc(g) and g with respective multiplicities
min{p, q} and p, and hence we see from (2.14) min{p, q} = p, as Lc(g) and
g share 0 CM . Thus we affirm that p < q. Again, by the same argument, it
follows from (2.13) that min{p, q} = q − 1. Therefore, we must have q = p + 1.
Thus we see that z0 be a zero of g(z) and g(z + c) with multiplicities p and
p + 1 respectively, and hence one can expresses g(z) and g(z + c) as follows

g(z) = (z − z0)pφ(z) and g(z + c) = (z − z0)p+1ψ(z) (2.16)

where φ(z) and ψ(z) are non-constant meromorphic functions (φ(z) may have
pole at z0 only with multiplicity at most p − 1) such that φ(z0) �= 0, ∞ and
ψ(z0) �= 0. We note that φ(z) must contain the factor (z − c − z0), otherwise
z0 could not be a zero of g(z + c).

From (2.14), we now obtained

eα(z) = c1
g(z + c)

g(z)
+ c0 = c1

(z − z0)ψ(z)
φ(z)

+ c0. (2.17)

Equation (2.17) shows that z0 + c is a pole of eα(z), which is clearly a contra-
diction.

Therefore, we have c1+c0 �= 1, and based on this assumption, we consider
the following two cases in our next discussions.

Case 1. If G(z) ≡ 0, then the Eq. (2.12) becomes

α′(z) +
g′(z)
g(z)

≡ 0, (2.18)

which in turn gives the solution

g(z) = Ce−α(z), (2.19)

where C is an arbitrary constants. We substitute (2.19) in (2.9) and obtain
(C + 1) − (c0 + c1)

C eα(z) = c1e
α(z)−α(z+c) + c0. (2.20)

From the R.H.S of (2.20), it follows that α has to be a constant. Then we must
have c1 + c0 = 0, and so C = −1, and then eα(z) = eα(z+c). Therefore by (2.9),
one can verify that Lc(f) ≡ 0, a contradiction.
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Case 2. Let G(z) �≡ 0.
By Lemma 2.1, we get that m(r,G) = S(r, f). From (2.9), we see that if

g(z0) = 0 for some z0 ∈ C , then

g(z0 + c) =
1 − (c0 + c1)

c1
,

so it follows that

N

(

r,
g′(z)g(z + c)

g2(z)

)

= N

(

r,
1

g(z)

)

+ N

(

r,
1

g(z)

)

.

Clearly N(r,G) = N

(

r,
1

g(z)

)

+ N

(

r,
1

g(z)

)

.

Therefore, since g is an entire function, we have

m(r, g) � m

(

r,
1
G

)

+ S(r, f)

� N(r,G) + S(r, f)

= N

(

r,
1
g

)

+ N

(

r,
1
g

)

+ S(r, f)

� T (r, g) − m

(

r,
1
g

)

+ N

(

r,
1
g

)

+ S(r, f)

� m(r, g) + N(r, g) − m

(

r,
1
g

)

+ N

(

r,
1
g

)

+ S(r, f)

� m(r, g) − m

(

r,
1
g

)

+ N

(

r,
1
g

)

+ S(r, f),

which in turn implies that

m

(

r,
1
g

)

� N

(

r,
1
g

)

+ S(r, f). (2.21)

Again, we can re-write (2.9) as

c1
g(z + c)

g(z)
+

c0 + c1 − 1
g(z)

= eα(z) − c0.

Hence, it is clear to us

m
(
r, eα(z)

)
= m

(

r,
1

g(z)

)

+ S(r, f), (2.22)

possibly outside of finite logarithmic measure.
Applying Second Fundamental Theorem to the function, we obtained

that

N

(

r,
1

eβ(z) − 1

)

= m
(
r, eβ(z)

)
+

(
r, eβ(z)

)
.
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Again note that from (2.8), we get

N

(

r,
1

f − a

)

� N

(

r,
1

eβ(z) − 1

)

(2.23)

Then from (2.21), (2.22) and (2.23), it follows that

m
(
r, eα(z)

)
� N

(

r,
1

f − a

)

+ S(r, f)

� N

(

r,
1

eβ(z) − 1

)

+ S(r, f)

� m
(
r, eβ(z)

)
+ S(r, f). (2.24)

Similarly, we can obtained

m
(
r, eβ(z)

)
� N

(

r,
1

f − b

)

+ S(r, f)

� N

(

r,
1

eα(z) − 1

)

+ S(r, f)

� m
(
r, eα(z)

)
+ S(r, f). (2.25)

By combining the inequalities (2.24) and (2.25), we have

m
(
r, eβ(z)

)
= m

(
r, eα(z)

)
+ S(r, f). (2.26)

Again solving Lc(f) and f , we get from (2.8) that

f(z) =
b − a + aeα(z) − beβ(z)

eα(z) − eβ(z)
. (2.27)

Therefore from (2.8), (2.26) and (2.27), we get that

S(r, f) = S
(
r, eα(z)

)
= S

(
r, eβ(z)

)
.

With the help of the standard relation in Nevanlinna Theory

m
(
r, eanzn

)
=

|an|rn

π
,

we obtain from (2.26) that

|αn|rn

π
(1 + o(1)) =

|βm|rm

π
(1 + o(1)) ,

which clearly implies that, n = m and |αn| = |βm|.
This completes the proof. �

Lemma 2.7. Let f be an entire function and Lc(f) = c1f(z + c) + c0f(z) be
such that

Lc(f) − a

f − a
≡ eα and

Lc(f) − b

f − b
≡ eβ ,
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where ab �= 0 and rests are as in Lemma 2.6, then α, β, 2α, 2β, α + 2β and
β + 2α all have the same degree n.

Proof. Since ab �= 0, so proceeding exactly the same way as done in Lemma 2.6,
we get n = m with |αn| = |βm|. It is now enough to show that the polynomial
α + β has degree n. From the assumption, solving for f and Lc(f), we get

f(z) =
b − a + aeα(z) − beβ(z)

eα(z) − eβ(z)
(2.28)

and

Lc(f) =
beα(z) − aeβ(z) + (a − b)eα(z)+β(z)

eα(z) − eβ(z)
. (2.29)

We also see that

Lc(f) = c1f(z + c) + c0f(z)

= c1
(b − a) + aeΔαeα − beΔβeβ

eΔαeα − eΔβeβ
+ c0

b − a + aeα(z) − beβ(z)

eα(z) − eβ(z)
.

(2.30)

From (2.29) and (2.30), we get

beα − aeβ + (a − b)eα+β − c0(b − a) − c0aeα + c0be
β

eα − eβ

≡ c1(b − a) + caeΔαeα − c1be
Δβeβ

eΔαeα − eΔβeβ
,

which in turn implies that
{

(b − c0a − c1a)eΔα

}

e2α −
{

(bc0 − a + c1b)eΔβ

}

e2β +
{

(a − b)eΔα

}

e2α+β

−
{

(a − b)eΔβ

}

eα+2β +
{

(bc0 + ca − a)eΔα + (c1b + c0a − b)eΔβ

}

eα+β

− (b − a)
{

c0e
Δα + c1

}

eα + (b − a)
{

c0e
Δβ + c1

}

eβ ≡ 0. (2.31)

Next if the degree of the polynomial α+β is less than n, then it immediate
that, in the two polynomials α(z) and β(z), the relation between the leading
coefficients αn and βn (since n = m) respectively, must be αn + βn = 0.
Therefore, we can write

α(z) = αnzn + αn−1z
n−1 + · · · + α1z + α0,

β(z) = −αnzn + βm−1z
m−a + · · · + β1z + β0.
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Substituting this in (2.31), we get that
{

(b − c0a − c1a)eΔα

}

ep1(z)e2αnzn −
{

(bc0 − a + c1b)eΔβ

}

ep2(z)e−2αnzn

+
{

(a − b)eΔα

}

ep3(z)eαnzn −
{

(a − b)eΔβ

}

ep4(z)e−αnzn

+
{

(bc0 + ca − a)eΔα + (c1b + c0a − b)eΔβ

}

ep5(z)

− (b− a)
{

c0e
Δα+c1

}

ep6(z)eαnzn

+ (b − a)
{

c0e
Δβ + c1

}

ep7(z)e−αnzn ≡ 0,

(2.32)

where Pj(z) (j = 1, 2, . . . , 7) all are polynomials with deg(Pj(z)) < n.
We now define a function H(z) := eαnzn

, and with the help of this, we
can rewrite (2.32) as follows

{

(b − c0a − c1a)eΔα

}

H4 +
{

(a − b)eΔαeP−3(z)}H3

+
{[

(bc0 + c0a − a)eΔα + (c1b + c0a − b)eΔβ

]

eP5(z)

}

H2

+ (b − a)
{

eΔβeP4(z) −
[

c0e
Δα + c1

]

eP6(z) +
[

c0e
Δβ + c1

]

eP7(z)

}

H

+
[

− (bc0 + c1b − a)eΔβ

]

eP2(z) ≡ 0. (2.33)

Applying Lemma 2.2 to the Eq. (2.33), we get

4 T (r,H) = S(r, f),

which leads to a contradiction.
Thus we must have deg(α + β) = n. �

Lemma 2.8. [17] Let h1, h2, . . ., hp be linearly independent meromorphic func-
tions satisfying

h1 + h2 + · · · + hp = 1.

Then, for j = 1, 2, . . . , p, we have

T (r, hj) �
p∑

k=1

N

(

r,
1
hk

)

−
p∑

k=1,k �=j

N(r, hk) + N(r,W) − N

(

r,
1
W

)

+ S(r),

where W = W(h1, h2, . . . , hp) is the Wronskian of h1, h2, . . ., hp, and

S(r) = O(log r) + O(log max
1�k�p

T (r, hj)), for r → ∞, r ∈ E,

for a set E ⊂ (0,∞) of finite Lebesgue measure. If all hk have finite order, E
can be chosen to be the empty set.
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3. Proofs of the Main Results

Proof of Theorem 1.1. Since f is an entire function, and with Lc(f) share a, b
CM, also f being a finite ordered, so there must exit two polynomials α ≡ α(z)
and β ≡ β(z), such that

Lc(f) − a

f − a
= eα and

Lc(f) − b

f − b
= eβ . (3.1)

Case 1. If eα = eβ , then from (3.1), we deduce that

Lc(f) − a

f − a
=

Lc(f) − b

f − b
,

which in turn implies that Lc(f) ≡ f .
We are now at a position to find the class of all the entire functions

satisfying the relation Lc(f) ≡ f . By the assumption of the result, and using
Lemma 2.5, we see that f is not a rational function. Therefore f(z) must be a
transcendental entire function.

Next we rewrite the above relation as follows

f(z + c) =
(

1 − c0

c1

)

f(z). (3.2)

Let f1(z) and f2(z) are the two solutions of (3.2). Then we have

f1(z + c) =
(

1 − c0

c1

)

f1(z) (3.3)

f2(z + c) =
(

1 − c0

c1

)

f2(z). (3.4)

Let us set a function φ(z) := f1(z)/f2(z). Then with the help of (3.3)
and (3.4), we get

φ(z + c) =
f1(z + c)
f2(z + c)

=

1 − c0

c1
f1(z)

1 − c0

c1
f2(z)

=
f1(z)
f2(z)

= φ(z),

for all z ∈ C. It can be easily check that the function f2(z) =
(

1−c0
c1

) z
c

g2(z),
where g2(z) is a entire function with g2(z + c) = g2(z), is a solution of (3.5).
Also, it is easy to verify that f1(z) = f2(z)φ(z), a solution of (3.5).
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Thus, one can observe that the linear combination

Lc(f) = a1f1(z) + a2f2(z)

=
(

1 − c0

c1

)
z

c (a1φ(z) + a2) g2(z)

=
(

1 − c0

c1

)
z

c
σ(z),

where σ(z) = (a1φ(z) + a2) g2(z) is such that σ(z + c) = σ(z), for all z ∈ C, is
the general solution of (3.5). Hence, we conclude that f(z) must assume the
following form

f(z) =
(

1 − c0

c1

)
z

c
g(z),

where g(z) is a entire function with g(z + c) = g(z), for all z ∈ C.

Case 2. If both α and β are constants and eα �= eβ , then from (3.1) we see
that f is a constant, which is not possible.

So in this case, we have eα = eβ , and then it follows from (3.1) that
Lc(f) ≡ f . Proceeding exactly same way as done in case 1, we get f(z) must
assume the following form

f(z) =
(

1 − c0

c1

)
z

c
g(z),

where g(z) is a entire function with g(z + c) = g(z), for all z ∈ C.
Therefore, we just to consider the case that at least one of α and β is non-

constant, and eα �= eβ . Next solving for Lc(f) and f , from (3.1), we obtained
that

f(z) =
b − a + aeα(z) − beβ(z)

eα(z) − eβ(z)
(3.5)

and

Lc(f) =
beα(z) − aeβ(z) + (a − b)eα(z)+β(z)

eα(z) − eβ(z)
. (3.6)

If only one of α(z) and β(z) is constant, then without any loss of gener-
ality, we assume that β(z) is a constant. Then from (3.1), we obtained that
if z0 is a zero of eα(z)−β(z), then we have eα(z0) = eβ(z0) = 1. Then eβ(z) �= 1
implies that eα(z) �= eβ(z), we know that this is impossible from the Second
Fundamental Theorem.



122 Page 18 of 28 M. B. Ahamed Results Math

If eβ = 1, then we obtained that Lc(f) ≡ f from (3.1), and hence as
above, we get

f(z) =
(

1 − c0

c1

)
z

c
g(z),

where g(z) is a entire function with g(z + c) = g(z), for all z ∈ C.

Case 3. Suppose that neither α(z)(�≡ β(z)) nor β(z) is a constant. Then from
(3.5), we get

N

(

r,
1

f − a

)

� N

(

r,
1

eβ(z) − 1

)

(3.7)

and

N

(

r,
1

f − b

)

� N

(

r,
1

eα(z) − 1

)

. (3.8)

Now we are at a position to discuss the next two subcases.

Subcase 3.1. Let ab �= 0. We set here

α(z) = αnzn + · · · + α1z + α0

and

β(z) = βmzn + · · · + β1z + β0,

where αn(�= 0), αn−1, . . . , α1, α0 ∈ C and βm(�= 0), βm−1, . . . , β1, β0 ∈ C.
Next we have the following subcases to discuss.

Subcase 3.1.1. We claim that m = n and |αn| = |βm|. This follows directly
from Lemma 2.6.

Subcase 3.1.2. In this case, we need to show that the polynomials α, β, 2α 2β,
α + β, 2α + β, α + 2β are the polynomials of same degree n. With the help of
Lemma 2.7,one can get it easily.

Subcase 3.1.3. In this case we want to show that α, β, α − β, 2α − β, α − 2β,
. . ., β − 2α, which means gj − gk in Lemma 2.4, are all polynomials with n.

Next, from the Subcases 3.1.1 and 3.1.2, we just need to consider the
case of the polynomial α − β. Let if possible deg(α − β) < n. Therefore, we
observe that the relation between the leading coefficients αn in α(z) and βn

in β(z) is αn − βn = 0. Therefore α(z) and β(z) can be written as

α(z) = αnzn + · · · + α1z + α0.

β(z) = αnzn + · · · + β1z + β0.
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Next we set P (z) = α(z)−β(z), and hence one can check that deg(P ) < n.
As in Lemma 2.7, here also we can get
{

(b − c0a − c1a)eΔα

}

e2α −
{

(bc0 − a + c1b)eΔβ

}

e2β +
{

(a − b)eΔα

}

e2α+β

−
{

(a − b)eΔβ

}

eα+2β +
{

(bc0 + ca − a)eΔα + (c1b + c0a − b)eΔβ

}

eα+β

− (b − a)
{

c0e
Δα + c1

}

eα + (b − a)
{

c0e
Δβ + c1

}

eβ ≡ 0. (3.9)

Substituting α(z) = P (z) + β(z) in (3.9), we get

(a − b)
{

eΔαe2p − eΔβeP

}

e3β

+
{

(b−c0a−c1a)eΔαe2P +
[

(bc0+c1a − a)eΔα+(c1b+c0a − b)eΔβ

]

eP

}

e2β

+ (b − a)
{

− (c0e
Δα + c1)eP + (c0e

Δβ + c1)
}

eβ ≡ 0. (3.10)

This can be written as
3∑

j=1

fj(z)egj(z) ≡ 0, (3.11)

where gj(z) = jβ(z), and

f1(z) = (b − a)
{

− (c0e
Δα + c1)eP + (c0e

Δβ + c1)
}

.

f2(z) =
{

(b−c0a−c1a)eΔαe2P +
[

(bc0+c1a− a)eΔα+(c1b+c0a − b)eΔβ

]

eP

}

.

f3(z) = (a − b)
{

eΔαe2p − eΔβeP

}

.

Applying Lemma 2.4, we obtained that f1(z) ≡ 0, f2(z) ≡ 0 and f3(z) ≡
0. Now f1(z) ≡ 0 implies that

eP =
c1 + c0e

Δβ

c1 + eΔα
. (3.12)

And f3(z) ≡ 0 implies that

eP =
eΔβ

eΔα
. (3.13)

Therefore combining (3.12) and (3.13), we get eΔα = eΔβ which in turn implies
that eα = eβ , and this is not possible as it is the omitted case. Thus it follows
from Subcases 3.1.1 and 3.1.2, and from (3.9) and Lemma 2.4 that
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c1 + c0e
Δα = 0, c1 + c0e

Δβ = 0, (b − c0a − c1a)eΔα = 0,

(bc0 + bc1 − a)eΔβ = 0, (bc0 + c1a − a)eΔα + (c1b + c0a − b)eδβ = 0,

eΔα = 0, eδβ = 0,

which is not possible.

Case 3.2. Let ab = 0. This implies that either a = 0 or b = 0 as a �= b. Without
any loss of generality, we may suppose that a = 1 and b = 0. Then Eq. (3.1)
reduces to

c1
f(z + c)

f(z)
= eβ − c0. (3.14)

and

f(z) =
eα(z) − 1

eα(z) − eβ(z)
. (3.15)

Applying Lemma 2.1, we see from (3.14), we get

m
(
r, eβ

)
= o

{

rρ(z)−1+ε

}

.

i.e., we see that

ρ
(
eβ

)
� ρ(f) − 1 < ρ(f).

Thus, from (3.15), and the above equation, we obtained that T (r, f) =
T (r, eα) + S(r, f). i.e., T

(
r, eβ

)
= S (r, eα) . Again from (3.15), we see that

eα − eβ = 0. i.e., eα = eβ = 1, which shows that

N

(

r,
1

eα − eβ

)

� N

(

r,
1

eβ − 1

)

= S
(
r, eβ

)
.

Therefore, by the Second Fundamental Theorem for small function, we
get

T (r, eα) � εT (r, eα) + S (r, eα) .

i.e.,

(1 − ε) T (r, eα) � S (r, eα) ,

which is clearly absurd as ε is an arbitrary positive number.
This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Since f and Lc(f) share a, b, ∞ CM, and f is of finite
ordered meromorphic function. Then there exists two polynomials α ≡ α(z),
β ≡ β(z) such that

f − a

Lc(f) − a
= eα,

f − b

Lc(f) − b
= eβ . (3.16)

We now discuss the following possible cases.
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Case 1. If eα = 1 or eβ = 1, then from (3.16), we get that Lc(f) ≡ f(z). So
proceeding exactly same way as done in the proof of Theorem 1.1, we can show
that the meromorphic function f here takes the form

f(z) =
(

1 − c0

c1

)
z

c
g(z),

where g(z) is a meromorphic function with g(z + c) = g(z), for all z ∈ C.

Case 2. Let neither eα = 1, nor eβ = 1 but eα = eβ . Then we get from (3.16),
f − a

Lc(f) − a
=

f − b

Lc(f) − b
,

which shows that Lc(f) ≡ f , and as above we get the form of the function is

f(z) =
(

1 − c0

c1

)
z

c
g(z),

where g(z) is a meromorphic function with g(z + c) = g(z), for all z ∈ C.

Case 3. We suppose that neither eα = 1, nor eβ = 1 nor eα = eβ .
Then solving for f and Lc(f), we get from (3.16) that

f(z) = a + (b − a)
eβ − 1
eγ − 1

(3.17)

and

Lc(f) = b + (b − a)
1 − e−α

eγ − 1
, (3.18)

where γ = β − α.
It follows from (3.17) that

T (r, f) � T
(
r, eβ + eγ

)
+ S(r, f).

Again we see that

Lc(f) = c1f(z + c) + c0f(z)

= a(c1 + c0) + (b − a)
{

c1
eβ(z+c) − 1
eγ(z+c) − 1

+ c0
eβ − 1
eγ − 1

}

= a(c1 + c0) + (b − a)
{

c1
β1e

β − 1
γ1eγ − 1

+ c0
eβ − 1
eγ − 1

}

, (3.19)

where β1(z) = eβ(z+c)−β(z), γ1(z) = eγ(z+c)−γ(z). Our main aim is to prove
that deg(β) = deg(γ) and for this we our discussion will includes the following
two cases.
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Subcase 3.1. Let us suppose that deg(β) < deg(γ). Therefore, we see that eβ is
a small function of eγ . Again note that deg[β(z +c)−β(z)] � deg(β) < deg(γ)
and deg[γ(z+c)−γ(z)] < deg(γ), which implies that β1(z) = eβ(z+c)−β(z) and
γ1 = eγ(z+c)−γ(z) are small functions of eγ .

Let z0 be a zero of γ1e
γ − 1, and β1(z0)eβ(z0 − 1 �= 0. If eγ(z0) − 1 �= 0,

then clearly z0 would be a pole of Lc(f), which in turn shows from (3.18) that
z0 would be a zero of eγ − 1. Thus, we conclude that z0 is a zero of eγ − 1.

If γ1 − 1 �= 0, then applying Second Fundamental Theorem, we obtained
that

T (r, eγ) � N

(

r,
1

γ1eγ − 1

)

+ N

(

r,
1
eγ

)

+ N (r, eγ) + S(r, eγ)

� N

(

r,
1

β1eβ − 1

)

+ N

(

r,
1

γ1 − 1

)

+ S(r, eγ)

� S(r, eγ),

which is impossible.
Thus we must have γ1 − 1 = 0. i.e., eγ(z+c)−γ(z) = 1, and which shows

that deg(γ) = 1. Since deg(β) < deg(γ), so one can immediately get that β
would be a constant, say B. So, we get from (3.19) that

Lc(f) = a(c1 + c0) + (b − a)(c1 + c0)
(

eβ − 1
eγ − 1

)

,

which contradicts that Lc(f) is not of the form
d1e

α + d2

d3eβ + d4
, where d1, d2,

d3, d4 ∈ C, and α, β are two polynomials in z.

Subcase 3.2. Let deg(β) > deg(γ).
In this case, eγ is a small function of eβ . Now proceeding as in Subcase

3.1, we can get that β1, γ1 are small function of eβ .
Let z1 be a zero of eβ − 1, such that eγ(z1) − 1 �= 0. Then z1 be a zero

of f − a. Since f and Lc(f) share a CM, so it is clear that z1 is also a zero of
Lc(f). Now from (3.19), we see that

Lc(f) − a = a(c1 + c0) + (b − a)
{

c1
β1e

β − 1
γ1eγ − 1

+ c0
eβ − 1
eγ − 1

}

− a.

Therefore, we get

(b − a)c1
β1(z1) − 1

γ1(z1)eγ(z1) − 1
= a(1 − c1 − c0).

We now deduce that

(b − a)c1
β1(z) − 1

γ1(z)eγ(z) − 1
= a(1 − c1 − c0).
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Otherwise, note that eγ − 1 �= 0 since eα �= eβ . Applying Second Fundamental
Theorem, we obtained that

T
(
r, eβ

)
� N

(

r,
1

eβ − 1

)

+ N

(

r,
1
eβ

)

+ N
(
r, eβ

)
+ S

(
r, eβ

)

� N

(

r,
1

eβ − 1

)

+ S
(
r, eβ

)

� S
(
r, eβ

)
,

which is not possible. Thus we have

(b − a)c1
β1 − 1

γ1eγ − 1
= a(1 − c1 − c0).

i.e.,

c1(b − a)eβ(z+c)−β(z) − c1(b − a) = a(1 − c1 − c0)eγ(z) − a(1 − c0 − c1).

Our aim is to show that γ is a constant. On contrary, we suppose that
deg(γ) � 1. Since deg(β) > deg(γ), so we get

c1(b − a)eβ(z+c)−β(z) = a(1 − c0 − c1)eγ(z)

and c1(b − a) = a(1 − c1 − c0),

which implies that β1 = eβ(z+c)−β(z) = eγ(z), for all z ∈ C. Combining (3.18)
and (3.19), we get

(b − a)
{

c1
β1e

β − 1
γ1eγ − 1

+ c0
eβ − 1
eγ − 1

}

= (b − a)
1 − eγ−β

eγ − 1
+ b − a(c1 + c0),

which in turn implies that
{

c1β1 (eγ − 1) + c0 (γ1e
γ − 1)

}

e2β

+
{

− c1 (eγ −1)− (c0+1) (γ1e
γ − 1)− b − a(c0 + c1)

b − a
(eγ −1) (γ1e

γ −1)
}

eβ

+ eγ (γ1e
γ − 1) ≡ 0. (3.20)

We see that (3.20) is the form

σ2e
2β + σ1e

β + σ0 ≡ 0, (3.21)

where

σ2(z) = c1β1 (eγ − 1) + c0 (γ1e
γ − 1) .

σ1(z) = −c1 (eγ −1) − (c0+1) (γ1e
γ − 1)− b − a(c0 + c1)

b − a
(eγ − 1) (γ1e

γ − 1) .

σ0(z) = eγ (γ1e
γ − 1) .

One can note that σ0, σ1, σ2 are all small functions of eβ as deg(β) >
deg(γ).
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Now from (3.21), we see that σ2(z) ≡ 0. i.e.,

c1β1 (eγ − 1) ≡ −c0 (γ1e
γ − 1) . (3.22)

We have β1 = eγ(z+c), hence using this in (3.22), we get

c1e
γ(z+c)+γ(z) + (c0 − c1)eγ(z+c) − c0 ≡ 0, (3.23)

which implies that γ is a constant. In other words, deg(γ) = 0, contradicts
the fact that deg(γ) � 1. Then it follows from Theorem 1.1, Lc(f) ≡ f , and
which contradicts our assumption Lc(f) �≡ f .

Thus from all the above discussions, we conclude that deg(β) = deg(γ).
Based on the fact that f is not a constant function, so we can now assume
that deg(β) = deg(γ) = n � 1.

Next simplifying Eq. (3.20), we get

γ1e2γ +

{
b − a(c1 + c0)

a − b
γ1

}

e2γ+β +

{

(γ1 + 1)
b − a(c1 + c0)

b − a
− (c0 + 1)γ1 − c1

}

eγ+β

+(−c1β1 − c0)e
2β + (c1β1 + c0γ1)e

2β+γ +

{

c1 + c0 + 1 − b − a(c0 + c1)

b − a

}

eβ

+(−1)eγ ≡ 0.

We can write the above equation in the following form

b0e
2γ + b1e

β+2γ + b2e
β+γ + b3e

2β + b4e
2β+γ + b5e

β + b6e
γ ≡ 0, (3.24)

where

b0 = γ1;

b1 =
b − a(c1 + c0)

a − b
γ1;

b2 = (γ1 + 1)
b − a(c1 + c0)

b − a
− (c1 + 1)γ1 − c1;

b3 = −c1β1 − c0;
b4 = c1β1 + c0γ1;

b5 = c1 + c0 + 1 − b − a(c1 + c0)
b − a

;

b6 = −1.

One can easily verify that all the bj (j = 0, 1, . . . , 6) are small function of
eβ as well as eγ . Equation (3.24) can be written as

6∑

j=0

bje
gj ≡ 0, (3.25)

where g0 = 2γ, g1 = 2γ + β, g2 = γ + β, g3 = 2β, g4 = 2β + γ, g5 = β, g6 = γ.
Our aim is to show that deg(γ − β) = n. On the contrary, we suppose

that deg(γ − β) < n. Then, it is obvious that eγ−β is a small function of eβ

and eγ .
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We denote NE

(
r, 1, eα, eβ

)
as the counting function of all the common

zeros of eβ − 1 and eγ − 1.
Since eβ �= eγ , so we have eβ−γ �= 1. Thus we have

NE

(
r, 1; eβ , eγ

)
� N

(

r,
1

eγ−β − 1

)

= S (r, eγ) .

Again, note that eγ is of finite order, and hence we must have
S (r + |c|, eγ)
= S (r, eγ) . We choose z2 ∈ C in such a way that γ1(z2)eγ(z2+c) − 1 = 0
but β1(z2)eβ(z2+c) − 1 �= 0. From our previous discussions, we can get that z2

is a zero of eγ − 1. Furthermore, z2 is also a zero of γ1 − 1.
If γ1 − 1 �= 0, then applying Second Fundamental Theorem, we have

T (r, eγ) � N

(

r,
1

γ1eγ − 1

)

+ N

(

r,
1

eγ − 1

)

+ N (r, eγ)

� NE

(
r + |c|, 1, eα, eβ

)
+ N

(

r,
1

γ1 − 1

)

+ S (r, eγ)

� T

(

r,
1

γ1 − 1

)

+ S (r + |c|, eγ) + S (r, eγ)

� S (r, eγ) ,

which is clearly absurd.
Thus we have γ1 = 1, which implies that deg(γ) = 1. Therefore, as a

consequence, we see that deg(β −γ) < 1. i.e., in other words β −γ = constant,
say D.

Since eγ(z+c)−γ(z) = 1, so we must have

eβ(z+c)−β(z) = eβ(z+c)−γ(z+c)−β(z)+γ(z)

= e[β(z+c)−γ(z+c)]−−[β(z)−γ(z)]

= eD−D

= 1.

Then it follows from (3.19) that

Lc(f) = (c0 + c1)
{

a + (b − a)
eβ − 1
eγ − 1

}

,

which contradicts our assumption Lc(f) �= d1eα+d2
d3eβ+d4

, for some dj ∈ C, and for
polynomials α and β in z.

Thus we have deg(γ − β) = n. Further, one has deg(g2 − gj) = n for
= 0, 1, 2, 4, 5, 6. Now we assume that b3 = −c1β1 − c0 �= 0. Thus we assume
φj = bje

gj (j = 0, 1, . . . , 6). Thus from (3.24), we have
∑6

j=0 φj ≡ 0. Thus from
the basic Linear Algebra, we deduce that there exist a set J ⊂ {0, 1, 2, . . . , 6}
and constants λj(�= 0) ∈ C, j ∈ J such that φ3 =

∑
j∈J λjφj , and such that

the set {φj : j ∈ J } is linearly independent.
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So, after re-writing, we must have:
∑

j∈J
λj

bj

b3
egj−g2 = 1.

Applying Nevanlinna lemma to the function

hj := λj
bj

b3
egj−g3 , j ∈ J ,

which are linearly independent satisfying
∑

j∈J hj = 1. We use the fact that
zeros and poles of hj , and their Wronskian can come only that of the function
bj with the following property

T (r, bj) = O
(
rn−1

)
= S(r, hj),

as deg(g3 − gj) = n, for j ∈ J , where S(r) is a defined as in Lemma 2.8, and
this is not possible.

Next, we consider b3 = −c1β1 − c0. i.e., β1 = − c0
c1

, a constant, which
in turn implies β is a polynomial with deg(β) = n = 1. Then γ is also a
polynomial with deg(γ) = n = 1, and hence β1 is a constant. We suppose
that

deg(γ − 2β) = n = 1, deg(γ + β) = n = 1.

Then one can get that deg(g6 − gj) = 0, for j = 0, 1, 2, 4, 5, 6.
Then replacing g3 by g6, and applying Lemma 2.8, as discussed above,

we can get a contradiction. Next, we assume that either γ − 2β or γ + β is
constant, say A. So, we discuss the following two cases in our discussions.

If γ − 2β is constant, then we see that the functions gj takes the form

g0 = 2γ = 4β + 2A;
g1 = 5β + 2A;
g2 = β + γ = 2β + A;
g3 = 2β;
g4 = 2β + γ = 4β + A;
g5 = β;
g6 = γ = 2β + A.

Since β1 and γ1 both are constants, so we see that all bj are constants.
So keeping b3 = 0, in our mind, the identity (3.25) becomes

t5e
5β + t4e

4β + t2e
2β + t1e

β ≡ 0, (3.26)

where t5 = b0e
2A, t4 = b0e

2A + b4e
A, t2 = b2e

A + b6e
A, t1 = b5.

The identity (3.26) shows that b1 = 0, b0e
A + b4 = 0, b2 + b6 = 0

andb5 = 0, which in turn implies that
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γ1 ≡ eγ(z+c)+γ(z) = 0;

eγ(z+c)−γ(z)eA + c1e
β(z+c)−β(z) + c0e

γ(z+c)−γ(z) ≡ 0;
{

eγ(z+c)−γ(z) + 1
}

b − a(c0 + c1)
b − a

− (c0 + 1)eγ(z+c)−γ(z) − c1 − 1 ≡ 0;

c1 + c0 + 1 − b − a(c0 + c1)
b − a

≡ 0.

This is impossible since a �= b.
Next we suppose that β + γ is constant. Proceeding exactly the same as

done above, we can arrive a contradiction.
This completes the proof of Theorem 1.2. �
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