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1. INTRODUCTION, DEFINITIONS, AND RESULTS

Through out the paper, the term “meromorphic” (resp., “entire”) will always mean meromorphic in
the whole complex plane C which are non-constant, unless specifically stated otherwise. We shall adopt
the standard notations of the Nevanlinna’s value distribution theory of meromorphic functions from ([9,
16]). For such a meromorphic function f and a ∈ C =: C ∪ {∞}, each z with f(z) = a will be called
a-point of f . We denote C

∗ by C
∗ := C� {0}.

In 1926, Nevanlinna first showed that a non-constant meromorphic function on the complex plane
C is uniquely determined by the pre-images, ignoring multiplicities, of five distinct values (including
infinity). The beauty of this result lies in the fact that there is no counterpart of this result in the real
function theory. A few years latter, he showed that when multiplicities are taken into consideration, four
points are enough and in that case either the two functions coincides or one is the bilinear transformation
of the other one. Clearly these results initiated the study of uniqueness of two meromorphic functions f
and g. The study becomes more interesting if the function g is related with f .

If for a ∈ C ∪ {∞}, f and g have the same set of a-points with same multiplicities then we say that f
and g share the value a CM (Counting Multiplicities). If we do not take the multiplicities into account,
f and g are said to share the value an IM (Ignoring Multiplicities).

Definition 1.1. For a non-constant meromorphic function f and any set S ⊂ C, we define

Ef (S) =
⋃

a∈S

{
(z, p) ∈ C× N : f(z) = a, with multiplicity p

}
,

Ef (S) =
⋃

a∈S

{
(z, 1) ∈ C× {1} : f(z) = a

}
.

If Ef (S) = Eg(S) (Ef (S) = Eg(S)), then we simply say f and g share S Counting Multiplicities
(CM) (Ignoring Multiplicities (IM)).
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More formally it can be explained as follows.

Definition 1.2. [3] If f is a meromorphic function and S ⊂ C then if z0 ∈ f−1(S), the value of
Ef (S) at the point z0 is denoted by Ef (S)(z0) : f−1(S) → N and is equal to the multiplicity of
zero of the function f(z)− f(z0) at z0 i.e. the order of the pole of the function (f(z)− f(z0))

−1 at
z0 if f(z0) ∈ C (resp. of the function f(z) if z0 is a pole for f).

Evidently, if S contains one element only, then it coincides with the usual definition of CM(IM)
sharing of values.

In 2001, an idea of gradation of sharing known as weighted sharing has been introduced by
Lahiri [11, 12] which measure how close a shared value is to being share CM or to being shared IM .
So for the purpose of relaxing the nature of sharing the sets, the notion of weighted sharing of values and
sets, has become an effective tool.

Recently, the definition have been reorganized by us [3] as follows.

Definition 1.3. [3] For k ∈ N and z0 ∈ f−1(S), let us put that Ef (S, k)(z0) = min{Ef (S)(z0), k +

1}. Given S ⊂ C, we say that meromorphic functions f and g share the set S up to multiplicity k
(or share S with weight k, or simply share (S, k)) if f−1(S) = g−1(S) and for each z0 ∈ f−1(S) we
have Ef (S, k)(z0) = Eg(S, k)(z0), which is represented by the notation Ef (S, k) = Eg(S, k).

As we proceed through the literature of the shift and difference operators of a meromorphic function
f , we feel that there should be a streamline in the definitions. This is one of the motivations of writing
this paper. To this end, below we are providing several definitions in a compact and convenient way.

In what follows, c always means a non-zero constant. We now define the shift and difference operator
in the following manner.

Definition 1.4. For a meromorphic function f , let us now denote its shift Icf and difference
operators Δcf respectively by Icf(z) = f(z + c) and Δcf(z) = (Ic − 1)f(z) = f(z + c)− f(z).

Next we define Δs
cf := Δs−1

c (Δcf),∀s ∈ N− {1}.
For the purpose of generalizing the above definitions, we now propose the definition of linear shift

operator Lp(f, I) as follows.

Definition 1.5. For a meromorphic function f and a positive integer p, we define

Lp(f, I) = apIcpf(z) + ap−1Icp−1f(z) + . . .+ a0Ic0f(z)

= apf(z + cp) + . . . + a1f(z + c1) + a0f(z + c0), (1.1)

ap(�= 0), . . . , a1, a0 ∈ C, cp, . . . , c1, c0 ∈ C.

In particular, for suitable choice of cj , say cj = jc, for j ∈ {0, 1, . . . , p}, we call Lp(f, I) as a linear
c-shift operator Lp(f, Ic) as follows.

Definition 1.6. For c ∈ C
∗ and a positive integer p, we define

Lp(f, Ic) = apIpcf(z) + ap−1I(p−1)cf(z) + . . .+ a0I0f(z)

= apf(z + pc) + ap−1f(z + (p− 1)c) + . . .+ a0f(z). (1.2)

Analogous to the definitions 1.5 and 1.6, we now introduce the definitions of linear difference operator
Lp(f,Δ) and linear c-difference operator Lp(f,Δc) in the following manner.

Definition 1.7.
Lp(f,Δ) = apΔcpf(z) + ap−1Δcp−1f(z) + . . .+ a0Δc0f(z) = apf(z + cp) + . . .+ a1f(z + c1)

+ a0f(z + c0)−

⎛

⎝
p∑

j=0

aj

⎞

⎠ f(z) = Lp(f, I)−

⎛

⎝
p∑

j=0

aj

⎞

⎠ f(z), (1.3)

Definition 1.8. For c ∈ C
∗, a positive integer p, putting cj = jc, j ∈ {0, 1, . . . , p}, in (1.3) we

define

Lp(f,Δc) = apΔpcf(z) + ap−1Δ(p−1)cf(z) + . . .
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+ a1Δcf(z) + a0Δ0f(z) = Lp(f, Ic)−

⎛

⎝
p∑

j=0

aj

⎞

⎠ f(z). (1.4)

For the specific choices of the constants as aj = (−1)p−j

(
p

j

)
, where 0 � j � p, in the expression

Lp (f,Δc), one can easily get that Lp (f,Δc) = Δ
p

cf.

For the sake of convenience, we are now going to introduce linear c-difference odd operator Lo
p(f,Δc)

as follows:
Definition 1.9. For c ∈ C

∗, putting cj = (2j + 1)c, j ∈ {0, 1, . . . , p}, in (1.3) we define,

Lo
p(f,Δc) = apΔ(2p+1)cf(z) + ap−1Δ(2p−1)cf(z) + . . . + a1Δ1f(z) + a0Δcf(z). (1.5)

Henceforth unless otherwise stated for a �= 0, throughout the paper, we denote, for n ∈ N, by
Sn
a = {a, aθ, aθ2, . . . , aθn−1}, where θ = exp

(
2πi
n

)
, and S2 = {∞}.

Recently a number of papers ([6, 8, 21] etc.) have focused on the value distribution in difference
analogues of meromorphic functions.

In this perspective, many researchers have become interested to deal with the uniqueness problem
of meromorphic function that share values or sets with its shift or difference operators. Below we are
mentioning few of them.

Theorem A [21]. Let c ∈ C
∗, and suppose that f(z) is a non-constant meromorphic function

with finite order such that Ef (Sn
1 ,∞) = EIcf (Sn

1 ,∞) and Ef (S2,∞) = EIcf (S2,∞). If n � 4, then
Icf ≡ tf , where tn = 1.

The following example shows that Theorem A is not valid for ‘infinite ordered’ meromorphic function.

Example 1.1. Let c ∈ C
∗ and f(z) = exp

(
sin

(πz
c

))
. It is clear that Icf = exp

(
− sin

(πz
c

))
.

It is easy to verify that Ef (Sn
1 ,∞) = EIcf (Sn

1 ,∞) and Ef (S2,∞) = EIcf (S2,∞) for any value of
n ∈ N but the conclusion of Theorem A ceases to hold.

Example 1.2. Let c ∈ C
∗ and f(z) = exp

(
exp

(
πiz

c

))
. It is clear that Icf =

exp

(
− exp

(
πiz

c

))
. It is easy to verify that Ef (Sn

1 ,∞) = EIcf (Sn
1 ,∞) and Ef (S2,∞) =

EIcf (S2,∞) for any value of n ∈ N but the conclusion of Theorem A ceases to hold.

The next examples show that for n = 1 or n = 2 Theorem A is not true.

Example 1.3. Let f(z) =
eBz + sin2

(
2πz
c

)
− 1

sin2
(
2πz
c

)
− 1

, where eBc = −1. It easy to verify that

Ef (S1
1 ,∞) = EIcf (S1

1 ,∞) and Ef (S2,∞) = EIcf (S2,∞) but Icf �≡ f .

Example 1.4. Let f(z) =
exp

(
πiz
2c

)
− exp

(
−πiz

2c

)
a2√

2ia
, where a is a non-zero constant. It easy to

verify that Ef (S2
1 ,∞) = EIcf (S2

1 ,∞) and Ef (S2,∞) = EIcf (S2,∞) but Icf �≡ f .

By replacing Icf by Δcf in Theorem A, Chen–Chen [5] obtained the following result.
Theorem B [5]. Let c ∈ C

∗ and Sn
a and S2 be defined as in Theorem A. Suppose that f(z) is

a non-constant meromorphic function with finite order such that Ef (Sn
a , 2) = EΔcf (Sn

a , 2) and
Ef (S2,∞) = EΔcf (S2,∞). If n � 7, then Δcf ≡ tf , where tn = 1 with t �= −1.

In this direction, Banerjee–Bhattacharyya [4] successfully reduced the weight of the sets as well as
the lower bound of n in Theorem B, by obtaining the following two results.

Theorem C [4]. Suppose that f is a non-constant meromorphic function of finite order such
that Ef (Sn

b , 2) = EΔcf (Sn
b , 2), where bn = a ∈ C

∗ and Ef (S2, 0) = EΔcf (S2, 0), and n � 6. Then
there is a constant t ∈ C such that Δcf ≡ tf , where tn = 1 and t �= −1.
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Theorem D. Suppose that f is a non-constant meromorphic function of finite order, Sn
b be

defined as in Theorem C, and such that Ef (Sn
b , 1) = EΔcf (Sn

b , 1) and Ef (S2, 0) = EΔcf (S2, 0), and
n � 7. Then there is a constant t ∈ C such that Δcf ≡ tf , where tn = 1 and t �= −1.

The following examples show that the condition ‘finite orderedness’ of the function f is not necessary
in Theorems B, C, D.

Example 1.5. For a complex number t(�= −1), let

f(z) =
exp

(
z
c log(t

1
p + 1)

)

exp

(
exp

(
2πiz

c

))
− 1

It is easy to verify that Δp
cf ≡ tf , for all positive integer p. As t is a complex constant

satisfying tn = 1, it follows that (Δp
cf)

n − 1 ≡ fn − 1. Hence EΔp
cf
(Sn

1 ,∞) = Ef (Sn
1 ,∞) and

EΔp
cf (S2,∞) = Ef (S2,∞).

In the same manner more examples can be formed as follows:

Example 1.6. Let f(z) =
exp

(
z
c log(t

1
p + 1)

)
sin

(
2πz
c

)

exp
(
sin

(
2πz
c

))
− 1

.

Example 1.7. Let f(z) =
exp

(
z
c log(t

1
p + 1)

)
cos

(
2πz
c

)

exp
(
cos

(
2πz
c

))
− 1

.

Example 1.8. Let f(z) =
exp

(
z
c log(t

1
p + 1)

)
exp

(
2kπiz

c

)

exp

(
exp

(
2πiz

c

))
− 1

.

Recently, in this direction Deng–Liu–Yang [7] obtained the following result.
Theorem E [7]. Let c ∈ C

∗ and Sn
a , S2 be defined as in Theorem A. Suppose that f(z) is a non-

constant meromorphic function such thatEf (Sn
a , k) = EΔcf (Sn

a , k) and Ef (S2,∞) = EΔcf (S2,∞).
If n � 7, when k = 1 or n � 5, when k � 2, then Δcf ≡ tf , where tn = 1 with t �= −1.

Remark 1.1. We know that all the lemmas and hence the corresponding results so far obtained
based on the lemmas related to a function and its shift Icf or Δcf are for finite ordered meromorphic
functions only, so we have a strong doubt about the validity of Theorem E for the case of “infinite ordered”
meromorphic function.

For the purpose of further improvements as well as extensions of Theorems B, C, D, E, we propose
the following questions.

(i) Can we replace the difference operator Δcf by a more general setting Lp(f,Δc) in Theorem B, C,
D, E?

(ii) Is it possible to relax the nature of sharing (S2,∞) in Theorems B, E further by (S2, 0)?

In this paper, we have answered the above questions affirmatively. Followings are the main result of
this paper.

Theorem 1.1. Let n, p ∈ N, and f be a non-constant meromorphic function of finite order such

that Ef (Sn
a , 1) = ELp(f,Δc)(Sn

a , 1) and Ef (S2, 0) = ELp(f,Δc)(S2, 0). If n � max

{
p+ 4, 7

}
, then

there exists a constant t ∈ C such that Lp(f,Δc) ≡ tf , where tn = 1 and t �= −1.
Theorem 1.2. Let n, p ∈ N, and f be a non-constant meromorphic function of finite order such

that Ef (Sn
a , 2) = ELp(f,Δc)(Sn

a , 2) and Ef (S2, 0) = ELp(f,Δc)(S2, 0). If n � max

{
p+ 3, 6

}
, then the

conclusion of Theorem 1.1 holds.
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Remark 1.2. Since Icf , Δcf and Lp(f, Ic) are the very special forms of Lp(f,Δc), so it is clear that
Theorem 1.1 and Theorem 1.2 improved and extended the Theorems B, C, D and E in a large extent.

Let us denote by Pc as the field of periods c(�= 0) of meromorphic functions defined in C. That means

Pc = {g : gis meromorphic andg(z + c) = g(z),∀z ∈ C}.

From Theorem 1.1 and Theorem 1.2, we can now easily deduce the following Corollaries:
Corollary 1.1. Let n, s ∈ N, and f be a non-constant meromorphic function of finite order such

thatEf (Sn
1 , 1) = EΔs

cf
(Sn

1 , 1) andEf (S2, 0) = EΔs
cf
(S2, 0). If n � max

{
s+4, 7

}
, then there exists

a constant t ∈ C such that Δ
s

cf ≡ tf , where tn = 1 and t �= −1.
Corollary 1.2. Let n, s ∈ N, and f be a non-constant meromorphic function of finite order

such that Ef (Sn
1 , 2) = EΔs

cf
(Sn

1 , 2) and Ef (S2, 0) = EΔs
cf
(S2, 0). If n � max

{
s+ 3, 6

}
, then the

conclusion of Corollary 1.1 holds.
Remark 1.3. From Examples 1.1 and 1.2, we see that Corollaries 1.1 and 1.2 are not valid for ‘infinite

ordered’ meromorphic functions for the case s = 1, a1 = 1, a0 = 0.
Corollary 1.3. Let s, where 1 � s � 3, be an integer and f be a non-constant meromorphic

function of finite order. Suppose Ef (S7
1 , 1) = EΔs

cf
(S7

1 , 1) and Ef (S2, 0) = EΔs
cf
(S2, 0). Then there

exists a constant t ∈ C such that Δ
s

cf ≡ tf , where t7 = 1 and t �= −1.
Corollary 1.4. Let s, where 1 � s � 3, be an integer and f be a non-constant meromorphic

function of finite order. Suppose Ef (S6
1 , 1) = EΔs

cf
(S6

1 , 1) and Ef (S2, 0) = EΔs
cf
(S2, 0). Then there

exists a constant t ∈ C such that Δ
s

cf ≡ tf , where t6 = 1 and t �= −1.
From the following three examples we see that the conclusion of Corollary 1.3 and Corollary 1.4

actually occurs for the case s = 1, s = 2 and s = 3.

Example 1.9. Let f(z) = (1 + ζ)z/c
exp

(
2πiz
c

)

exp
(
2πiz
c

)
− 1

, where ζ = exp

(
2πi

7

) (
ζ = exp

(
2πi

6

))
.

Clearly Ef (S7
1 , 1) = EΔcf (S7

1 , 1) (Ef (S6
1 , 2) = EΔcf (S6

1 , 2)) and Ef (S2, 0) = EΔcf (S2, 0) and Δcf ≡
ζf .

Example 1.10. Let f(z) =
(
1 +

√
ζ
)z/c sin

(
2πz
c

)

sin
(
2πz
c

)
− 1

, where ζ = exp

(
2πi

7

)
×

(
ζ = exp

(
2πi

6

))
. Clearly Ef (S7

1 , 1) = EΔcf (S7
1 , 1) (Ef (S6

1 , 2) = EΔcf (S6
1 , 2)) and Ef (S2, 0) =

EΔ2
cf
(S2, 0) and Δ2

cf ≡ ζf .

Example 1.11. Let f(z) =
(
1 + 3

√
ζω

)z/c cos
(
2πz
c

)

exp
(
2πiz
c

)
− 1

, where ζ = exp

(
2πi

7

)
×

(
ζ = exp

(
2πi

6

))
. Clearly Ef (S7

1 , 1) = EΔcf (S7
1 , 1) (Ef (S6

1 , 2) = EΔcf (S6
1 , 2)) and Ef (S2, 0) =

EΔ3
cf
(S2, 0) and Δ3

cf ≡ ζf .

Remark 1.4. We note that the linear difference equation

Δ
s

cf(z) =

s∑

i=0

(−1)s−i

(
n

i

)
f(z + ci) = tf(z), (1.6)

where ts = 1, t �= −1, can be solved in terms of linear combinations of exponential functions with
coefficients in Pc. In fact, if f be a finite ordered meromorphic function satisfies the relation Δs

cf ≡ tf ,
then f(z) must assume the following form

f(z) = πs−1(z)α
z
c
s−1 + . . .+ π0(z)α

z
c
0 ,
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where all πj ∈ Pc, and αj are roots of the equation
s∑

j=0

(−1)s−j

(
s

j

)
zj = t.

Following example shows that in Theorems 1.1 and 1.2 the term ‘finite order meromorphic functions’

can not be removed for a special class of linear c-difference odd operator, where aj = (−1)j
(
p

j

)
2p−j .

We note that in this case (1.5) takes the form Lo
p(f,Δc) =

p∑

j=0

ajf(z + (2j + 1)c).

Example 1.12. For c ∈ C
∗, we suppose that f(z) = exp

(
cos

(πz
c

))
. We choose Lp(f,Δc) as

Lo
p(f,Δc). Since cos

(
π(z + (2j + 1)c)

c

)
= − cos

(πz
c

)
and it follows that Lo

p(f,Δc) =

exp
(
− cos

(πz
c

))
; so f satisfies all the conditions of Theorems 1.1 and 1.2 but Lo

p(f,Δc) �≡ tf .

However, unfortunately, we were not succeeded to find any counter example for general linear c-
difference operator.

The next example shows that the set S1 in Corollary 1.3 simply can not be replaced by an arbitrary
set.

Example 1.13. Let S#
a =

{
a,

a√
ω
,
a

ω
, 0,

a

ω
√
ω
, aω, a

√
ω

}
and S2 = {∞}, where a is any non-zero

complex number, ω is non-real cube root of unity,

f(z) = exp
(z
c
log(ω

1
2p + 1)

) 1

cos2
(
2πz
c

)
− 1

,

where p(1 � p � 4) be an integer.

It is easy to verify that Ef (S#
a , 1) = EΔp

cf (S
#
a , 1) and Ef (S2, 0) = EΔp

cf (S2, 0) but neither Δp
cf ≡ f

with t7 = 1 nor f has the specific form as above.

Though the standard definitions and notations of the value distribution theory are available in [9, 16],
we explain here some of them which are used in the paper.

Definition 1.10 [13]. For a ∈ C ∪ {∞}, we denote by N(r, a; f | = 1) the counting function
of simple a-points of f . For a positive integer p, we denote N(r, a; f | � p)(N(r, a; f | � p)) the
counting function of those a-points of f whose multiplicities are not greater (less) than p where
each a-point is counted according to its multiplicity.

N(r, a; f | � p)(N(r, a; f | � p)) are defined similarly, where in counting the a-points of f we
ignore the multiplicities.

Definition 1.11 [11]. We denote by N2(r, a; f) the sum N(r, a; f) +N(r, a; f | � 2).

Definition 1.12 [18, 20]. Let f and g be two non-constant meromorphic functions such that
f and g share the value 1 IM . Let z0 be a 1-point of f with multiplicity p, a 1-point of g with
multiplicity q. We denote by NL(r, 1; f) the counting function of those 1-points of f and g where
p > q, each point in this counting function is counted only once. In the same way we can define
NL(r, 1; g).

Definition 1.13 [6, 9]. Let f , g share a value IM . We denote by N∗(r, a; f, g) = N∗(r, a; g, f) and
N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

Definition 1.14 [14]. Let a, b ∈ C ∪ {∞}. We denote by N(r, a; f |g = b) the counting function of
those a-points of f , counted according to multiplicity, which are b-points of g.
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2. SOME USEFUL LEMMAS

In this section, we are going to discuss some lemmas which will needed later to prove our main
results. We define, for a non-constant meromorphic functions f ,

F =

(
f

a

)n

, G =

(
Lp(f,Δc)

a

)n

. (2.1)

Associated to F and G, we next define H and Ψ as follows:

H =

(
F ′′

F ′ −
2F ′

F − 1

)
−

(
G′′

G′ −
2G′

G − 1

)
, (2.2)

and

Ψ =
F ′

F(F − 1)
− G′

G(G − 1)
. (2.3)

Lemma 2.1. [6] Let g be a meromorphic function of finite order ρ, and let c ∈ C
∗ be fixed. Then

for each ε > 0, we have

m

(
r,
g(z + c)

g(z)

)
+m

(
r,

g(z)

g(z + c)

)
= O(rρ−1+ε).

Lemma 2.2. Let F and G be given by (2.1) satisfying EF (1,m) = EG(1,m), 0 � m < ∞ with
H �≡ 0, then

N
1)
E

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

G − 1

)
� N(r,H) + S(r,F) + S(r,G).

Proof. Since EF (1, q) = EG(1, q), so it is obvious that any simple 1-point of F and G is a zero of H.
The construction of H implies that, m(r,H) = S(r,F) + S(r,G). By the First Fundamental Theorem,
we get

N
1)
E

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

G − 1

)
� N

(
r,

1

H

)
� N(r,H) + S(r,F) + S(r,G).

The proof is complete. �
Lemma 2.3 [10]. Let f be a non-constant meromorphic function of finite order and c ∈ C

∗.
Then

N(r, 0; f(z + c)) � N(r, 0; f(z)) + S(r, f(z)), N(r,∞; f(z + c)) � N(r,∞; f(z)) + S(r, f(z)),

N(r, 0; f(z + c)) � N(r, 0; f(z)) + S(r, f(z)), N(r,∞; f(z + c)) � N(r,∞; f(z)) + S(r, f(z)).

Lemma 2.4. Let g be a meromorphic function of finite order ρ, and let c ∈ C
∗ be fixed. Then

T (r, g(z + c)) = T (r, g(z)) + S(r, g).

Proof. The lemma can be proof in the line of the proof of [6, Theorem 2.1]. �
Lemma 2.5. Let f be a transcendental meromorphic function of finite order, thenS(r,Lp(f,Δc))

can be replaced by S(r, f).
Proof. In view of Lemma 2.4, we have

T (r,Lp(f,Δc)) �
p∑

j=1

T (r, f(z + cj)) + T (r, f) +O(1) � (p+ 1)T (r, f) +O(1),

with this the lemma follows. �

Lemma 2.6 [19]. Let f be a non-constant meromorphic function and Q(f) =

n∑

i=0

aif
i, where

ai ∈ C with an �= 0. Then T (r,Q(f)) = nT (r, f) +O(1).
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Lemma 2.7 [15]. If N
(
r, 0; f (k)|f �= 0

)
be the counting function of those zeros of f (k) which are

not the zeros of f , where a zero of f (k) is counted according to its multiplicity, then

N
(
r, 0; f (k)|f �= 0

)
� kN(r,∞; f) +N(r, 0; f | < k) + kN(r, 0; f | � k) + S(r, f).

Lemma 2.8. Let F and G share (1, t), 1 � t < ∞ and (∞, 0), then

N∗(r, 1;F ,G) � 1

t+ 1

{
N(r, 0;F) +N(r, 0;G)

}
+

2

t+ 1
N(r,∞;F) + S(r, f).

Proof. In view of Lemma 2.5 and 2.7, one must have

N∗(r, 1;F ,G) = NL(r, 1;F) +NL(r, 1;G) � N(r, 1;F| � t+ 2) +N(r, 1;G| � t+ 2)

� 1

t+ 1

{
N(r, 0;F ′|F �= 0) +N(r, 0;G′|G �= 0)

}

� 1

t+ 1

{
N(r, 0;F) +N(r, 0;G) + 2N (r,∞;F)

}
+ S(r, f).

This completes the proof of the lemma. �
Lemma 2.9. Let F and G share (1, t), 1 � t < ∞ and (∞, 0), then

N∗(r, 1;F ,G) � 1

t

{
N(r, 0;F) +N(r,∞;F)

}
+ S(r,F) + S(r, f).

Proof. In view of Lemma 2.7, we have

N∗(r, 1;F ,G) � N(r, 1;F| � t+ 1) � 1

t
N(r, 0;F ′|F = 1).

We omit the details since rest of the proof follows the line of the proof of Lemma 2.8. �
Lemma 2.10. For a meromorphic function f , we suppose that F and G be given as in (2.1) and

Ψ �≡ 0. If f and Lp(f,Δc) share (∞, k), where 0 � k < ∞ and F , G share (1, t), then
{
n(k + 1)− 1

}
N(r,∞; f | � k + 1)

� t+ 2

t+ 1

{
N(r, 0; f) +N(r, 0;Lp(f,Δc))

}
+

2

t+ 1
N(r,∞; f) + S(r, f).

Proof. It is clear that F and G share (∞, nk) since f and Lp(f,Δc) share (∞, k). Let z0 be a pole
of F of multiplicity q(� nk + 1), then z0 must be a pole of G of multiplicity r(� nk + 1) and conversely.
Again one may note that there is no pole of F and G of multiplicity q, where nk < q < n(k + 1). Next by
using Lemmas 2.5, 2.6 and 2.8, we get from the definition of Ψ that

{
nk + n− 1

}
N(r,∞; f | � k + 1) � N(r, 0;Ψ) � N(r,∞; Ψ) + S(r,F) + S(r,G)

� N(r, 0;F) +N(r, 0;G) +N∗(r, 1;F ,G) + S(r,F) + S(r,G) � N(r.0; f)

+N(r, 0;Lp(f,Δc)) +
1

t+ 1

{
N(r, 0; f) +N(r, 0;Lp(f,Δc)) + 2N(r,∞; f)

}
+ S(r, f)

� t+ 2

t+ 1

{
N(r, 0; f) +N(r, 0;Lp(f,Δc))

}
+

2

t+ 1
N(r,∞; f) + S(r, f).

This completes the proof of the lemma. �
Lemma 2.11 [17, 20]. If F and G share (∞, 0) and Ψ ≡ 0, then F ≡ G.
Lemma 2.12 [18]. Let H ≡ 0 and F , G share (∞, 0), then F and G share (1,∞), (∞,∞).
Lemma 2.13 [1]. Let F , G be two meromorphic functions sharing (1, 2) and (∞, k), where

0 � k � ∞. Then one of the following cases holds.

JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS Vol. 55 No. 3 2020



RESULTS ON MEROMORPHIC FUNCTION 151

(i) T (r,F) + T (r,G) � 2{N2(r, 0;F) +N2(r, 0;G) +N(r,∞;F) +N(r,∞;G) +N∗(r, 1;F ,G)} +
S(r,F) + S(r,G).

(ii) F ≡ G.
(iii) FG ≡ 1.

3. PROOFS OF THE MAIN RESULTS

Proof. of Theorem 1.1. Let F and G be given by (2.1).
Now we discuss the following two cases.

Case 1. Let us suppose that H �≡ 0. Then in view of Lemma 2.11, we have Ψ �≡ 0. Since Ef (Sn
a , 1) =

ELp(f,Δc)(Sn
a , 1) and Ef (S2, 0) = ELp(f,Δc)(S2, 0), it follows that F and G share (1, 1) and (∞, 0) . By

the Second Fundamental Theorem, we get

T (r,F) + T (r,G) � N(r, 1;F) +N(r, 0;F) +N(r,∞;F) +N(r, 1;G) +N(r, 0;G)
+N(r,∞;G) −N0(r, 0;F ′)−N0(r, 0;G′) + S(r,F) + S(r,G).

Using Lemma 2.6 and Lemmas 2.1, 2.2, 2.3 of [2, p. 384], we get

n

{
T (r, f) + T (r,Lp(f,Δc))

}
� 4

{
N(r, 0; f) +N(r, 0;Lp(f,Δc))

}

+ 6N (r,∞; f)− 2

(
t− 3

2

)
N∗(r, 1;F ,G) + S(r,F) + S(r,G). (3.1)

Applying Lemma 2.8 with t = 1 and Lemma 2.10 with t = 1, k = 0, we get from (3.1) that

n

{
T (r, f) + T (r,Lp(f,Δc))

}

� 9

2

{
N(r, 0; f) +N(r, 0;Lp(f,Δc))

}
+ 7N (r,∞; f) + S(r, f) + S(r,Lp(f,Δc))

�
(
9

2
+

21

2(n − 2)

){
N(r, 0; f) +N(r, 0;Lp(f,Δc))

}
+ S(r, f) + S(r,Lp(f,Δc))

�
(
9

2
+

21

2(n− 2)

){
T (r, f) + T (r,Lp(f,Δc))

}
+ S(r, f) + S(r,Lp(f,Δc)). (3.2)

which contradicts n � 7.
Case 2. Let us suppose that H ≡ 0. On integration twice, we get

F =
AG + B
CG +D , (3.3)

where A,B, C,D ∈ C such that AD − BC �= 0.
We now discuss the following two cases.

Case 2a. Let AC �= 0. We thus see that A �= 0 and C �= 0.
It follows from (3.3) that

F − A
C =

BC − AD
C(CG +D)

. (3.4)

Clearly it follows from (3.4) that all the zeros of F − A
C corresponds from the poles of G. We also see

from our hypothesis that F and G share (∞,∞), so from (3.3) we see that ∞ is an e.v.P of G. In other
words F omits the value A

C .
By the Second Fundamental Theorem, we get

nT (r, f) � N(r, 0;F) +N(r,∞;F) +N

(
r,
A
C ;F

)
+ S(r,F)
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= N(r, 0; f) + S(r, f) � T (r, f) + S(r, f),

which contradicts n � 7.
Case 2b. Let AC = 0. This shows that one ofA and C is zero, otherwise forA = 0 = C leads the function
F to be a constant and which would be a contradiction.
Subcase 2b.1. Let A �= 0 and C = 0. Then,

F = αG + β, (3.5)

where α =
A
D and β =

B
D .

If F has no 1-points, then by Second Fundamental Theorem, we get

nT (r, f) � N(r, 0;F) +N(r,∞;F) + S(r,F) � 2T (r, f) + S(r, f),

which contradicts n � 7.
If F and G both have some 1-points, then we have α+ β = 1.
If β = 0, then α = 1. So we have F ≡ G. Thus we have Lp (f,Δc) ≡ tf , where tn = 1 with t �= −1.
Next, we suppose that β �= 0. So it is clear that F − β = αG. By Second Fundamental Theorem,

we get

nT (r, f) � N(r, 0;F) +N(r,∞;F) +N(r, β;F) + S(r,F)

� N(r, 0; f) +N(r,∞; f) +N(r, 0;G) � (p+ 3)T (r, f) + S(r, f),

which contradicts n � p+ 4.
Subcase 2b.2. Let A = 0 but C �= 0. Then we have

F =
1

γG + δ
, (3.6)

where γ =
C
B and δ =

D
B .

If F has no 1-points, then proceeding exactly same way as done in Subcase b.1, we arrive at a
contradiction.

If F and G have some 1-points, then it follows from (3.6) that γ + δ = 1.
We now see from (3.6) that

F =
1

γG + 1− γ
. (3.7)

We note that as C �= 0, γ �= 0. Suppose δ �= 0. So γ �= 1. Since F and G share (∞,∞), so from (3.7),
we see that F and G omit ∞.

By the Second Fundamental Theorem, we get

nT (r, f) = T (r,F) � N(r, 0;F) +N(r,∞;F) +N

(
r,

1

1− γ
;F

)
+ S(r,F)

� N(r, 0; f) +N(r, 0;G) + S(r, f) � (p+ 2)T (r, f) + S(r, f),

which contradicts n � p+ 4.
Next we suppose that δ = 0. Therefore γ = 1. Then we get FG ≡ 1, i.e., f (Lp(f,Δc)) ≡ θa2, where

θn = 1.

Next since F and G share (∞,∞), so we have N

(
r,
Lp(f,Δc)

f

)
= N(r, 0; f) and so in view of

Lemma 2.1, we get

2T (r, f) � T

(
r,
θa2

f2

)
+ S(r, f) � T

(
r,
Lp(f,Δc)

f

)
+ S(r, f)

� N

(
r,
Lp(f,Δc)

f

)
+ S(r, f) � N(r, 0; f) + S(r, f) � T (r, f) + S(r, f),
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which is a contradiction.
This completes the proof of Theorem 1.1. �
Proof. of Theorem 1.2. Let F and G be given by (2.1) and Ψ �≡ 0, since otherwise the proof follows

from the Lemma 2.11. Again Since Ef (Sn
a , 2) = ELp(f,Δc)(Sn

a , 2) and Ef (S2, 0) = ELp(f,Δc)(S2, 0), so
it follows that F , G share (1, 2) and (∞, 0). Let if possible (i) of Lemma 2.13 holds. Then with the help
of Lemma 2.6, one must have

n

{
T (r, f) + T (r,Lp(f,Δc))

}

� 4

{
N(r, 0; f) +N(r, 0;Lp(f,Δc))

}
+ 6N(r,∞; f) + S(r,F) + S(r,G). (3.8)

Now with the help of Lemma 2.10 with t = 2, k = 0, we get from (3.8)

n

{
T (r, f) + T (r,Lp(f,Δc))

}

�
(
4 +

24

3n− 5

){
T (r, f) + T (r,Lp(f,Δc))

}
+ S(r, f) + S(r,Lp(f,Δc)),

which contradicts n � 6.
Now the rest of the proof follows from the line of the proof of Theorem 1.1. �

4. PROOFS OF THE COROLLARIES

Proof of Corollary 1.1. Let us suppose that F = fn and G =
(
Δ

s

c

)n. Then, following the same
procedure as adopted in the proof of Theorem 1.1, we obtain

Δ
s

c ≡ tf. (4.1)

Proof of Corollary 1.2. The proof can be carried out exactly the line of the proof of Theorem 1.2 and
that of Corollary 1.1.

Proof of Remark 1.4. Since the distinct roots of
s∑

j=0

(−1)s−j

(
s

j

)
zj = t are αj = 1 + |t|

1
s e

θ+2πij
s ,

where −π < θ � π, j = 0, 1, . . . , s− 1, therefore the general solution of the relation Δ
s

cf ≡ tf will be of
the form

f(z) = πs−1(z)α
z
c
s−1 + . . .+ π0(z)α

z
c
0 .

Verification:

Δ
s

cf =

(
s

0

)
f(z + sc)−

(
s

1

)
f(z + (s− 1)c) + . . . + (−1)s

(
s

s

)
f(z)

=

(
s

0

){
πs−1(z + sc)α

z
c
s−1α

p
s−1 + . . .+ π0(z + sc)α

z
c
0 α

s
0

}

−
(
s

1

){
πs−1(z + (s− 1)c)α

z
c
s−1α

s−1
s−1 + . . . + π0(z + (s − 1)c)α

z
c
0 α

s−1
0

}

+ . . .+

(
s

s

)
(−1)s

{
πs−1(z)α

z
c
s−1 + . . . + π0(z)α

z
c
0

}

=

{(
s

0

)
αs
s−1 −

(
s

1

)
αs−1
s−1 + . . .+

(
s

s

)
(−1)s

}
πs−1(z)α

z
c
s−1

+ . . .+

{(
s

0

)
αs
0 −

(
s

1

)
αs−1
0 + . . .+

(
s

s

)
(−1)s

}
π0(z)α

z
c
0

= (αs−1 − 1)s πs−1(z)α
z
c
s−1 + . . . + (α0 − 1)s π0(z)α

z
c
0
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=
(
|t| 1s e

θ+2(s−1)πi
s

)s
πs−1(z)α

z
c
s−1 + . . . +

(
|t| 1s e θ+oi

s

)s
π0(z)α

z
c
0

= t

{
πs−1(z)α

z
c
s−1 + . . .+ π0(z)α

z
c
0

}
= tf(z).

5. CONCLUDING REMARKS

In this section, we have the following observation.
Observation 5.1. A non-constant finite ordered meromorphic function satisfying the relation

Lp(f,Δc) ≡ tf (5.1)

must assume the following form

f(z) = πp(z)α
z
c
p + . . .+ π1(z)α

z
c
1 ,

where πj(z), (j = 1, . . . , p) ∈ Pc, and αj(j = 1, . . . , p) are the roots of the equation

apw
p + ap−1w

p−1 + . . .+ a1w −

⎛

⎝
p∑

j=1

aj + t

⎞

⎠ = 0.

For p = 1, we have L1(f,Δc) ≡ tf , which implies that f(z + c) =

(
a1 + t

a1

)
f(z).

Clearly, in this case the general solution of (5.1) is

f(z) = π1(z)

(
a1 + t

a1

) z
c

= π1(z)α
z
c

1 ,

where α1 is a root of the equation a1w − (a1 + t) = 0.
Verification:

L1(f,Δc) = a1f(z + c)− (a1)f(z) = a1

{
π1(z + c)α1α

z
c
1

}
− a1

{
π1(z)α

z
c
1

}

=

{
a1α1 − a1

}
π1(z)α

z
c
1 = tπ1(z)α

z
c
1 = tf(z).

For p = 2, we have L2(f,Δc) ≡ tf , which in turn implies that

a2f(z + 2c) + a1f(z + c)− (a1 + a2 + t)f(z) ≡ 0.

Let α1, α2 be the roots of the equation

a2w
2 + a1w − (a1 + a2 + t) = 0.

Then

α1, α2 =
−a1 ±

√
a21 + 4a2(a1 + a2 + t)

2a2
.

In this case the general solution of (5.1) is

f(z) = π1(z)

(
−a1 +

√
a21 + 4a2(a1 + a2 + t)

2a2

) z
c

+ π2(z)

(
−a1 −

√
a21 + 4a2(a1 + a2 + t)

2a2

) z
c

= π1(z)α
z
c

1 + π2(z)α
z
c

2 .
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Lets verify the above fact.

L2(f,Δc) = a2f(z + 2c) + a1f(z + c)− (a1 + a2)f(z) = a2

{
π1(z + 2c)λ2

1λ
z
c
1 + π2(z + 2c)λ2

2λ
z
c
2

}

+ a1

{
π1(z + c)λ1λ

z
c
1 + π2(z + c)λ2λ

z
c
2

}
− (a1 + a2)

{
π1(z)λ

z
c
1 + π2(z)λ

z
c
2

}

=

{
a2λ

2
1 + a1λ1 − (a1 + a2)

}
π1(z)λ

z
c
1 +

{
a2λ

2
2 + a1λ2 − (a1 + a2)

}
π2(z)λ

z
c
2

= tπ1(z)λ
z
c
1 + tπ2(z)λ

z
c
2 = t

{
π1(z)λ

z
c
1 + π2(z)λ

z
c
2

}
= tf(z).

So we conjecture that the general solution of the relation (5.1) is

f(z) = πp(z)α
z
c
p + πp−1(z)α

z
c
p−1 + . . .+ π1(z)α

z
c
1 ,

where πj(z)(j = 1, . . . , p) ∈ Pc, and αj(j = 1, . . . , p) are the roots of the equation

apw
p + ap−1w

p−1 + . . .+ a1w −

⎛

⎝
p∑

j=1

aj + t

⎞

⎠ = 0.

But unfortunately we have not succeeded to prove it.
An open question. What would be the general meromorphic solution of the difference equation

Lp(f,Δ) ≡ tf?
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