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ABSTRACT. Taking two and three shared set problems into background, the uniqueness problem of
a meromorphic function together with its shift operator have been studied. Our results will improve
a number of recent results in the literature. Some examples have been provided in the last section to
show that certain conditions used in the paper, is the best possible.
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1. Introduction, definitions and results

In the paper we will denote by C the set of all complex numbers, by N the set of all positive
integers and by C =: C ∪ ∞. Also it is assumed without stating it explicitly that all considered
meromorphic functions are defined on C and that they are non-constant.

For such a function f and a ∈ C, each z with f(z) = a will be called a-point of f . For a
meromorphic function f and a set S ⊂ C we define Ef (S) (Ef (S)) as the set of all a-points of
f , when a ∈ S, together with their multiplicity (without their multiplicity). If Ef (S) = Eg(S)

(Ef (S) = Eg(S)) then we simply say f , g share S Counting Multiplicities or CM (Ignoring
Multiplicities or IM).

Lahiri [10, 11] introduced the following notion of weighted sharing of values and sets. It has
become an useful tool to find new directions of research in the uniqueness theory.

Definition 1.1 ([10,11]). Let k be a non-negative integer or infinity. For a ∈ C∪{∞}, we denote
by Ef (a, k), the set of all a-points of f , where an a-point of multiplicity m is counted m times if
m ≤ k and k+ 1 times if m > k. If Ef (a, k) = Eg(a, k), we see that f and g share the value a with
weight k.

We write f and g share (a, k) to mean that f and g share the value a with weight k.

Definition 1.2 ([10,11]). Let S be a set of distinct elements of C∪{∞} and k be a non-negative
integer or ∞. We denote by Ef (S, k) the set

⋃
a∈S

Ef (a, k). If
⋃
a∈S

Ef (a, k) =
⋃
a∈S

Eg(a, k), then we

say that f and g share the set S with k.

It was Fujimoto [7], who first discovered a special property of a polynomial, reasonably called as
critical injection property though initially Fujimoto [7] called it as property (H). Critical injection
property of a polynomial may be stated as follows: A Polynomial P is said to satisfy property if
P (α) 6= P (β) for any two distinct zeros of α and β of the derivative P ′.

2010 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 30D35.
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Clearly, the meaning of critical injection property is that the polynomial P is injective on the
set of distinct zeros of P ′. Naturally a polynomial with property may be called a critical injective
polynomial.

For a non-constant meromorphic function, we define its shift and difference operator respectively
by f(z + ω) and ∆ωf = f(z + ω)− f(z), where ω is a non-zero constant.

Recently among the researchers [4–6, 13, 15], an increasing interest has been found to find the
possible relationship between a meromorphic function f(z) and its shift f(z + ω) or its difference
∆cf .

However in [5,15], the authors were unable to obtain the uniqueness relationship of a meromor-
phic function with its shift operator for the specific choice of the sets.

So quest for those range sets, shared by a function and its shift operator, for which they become
identical, is a natural phenomenon. Earlier several authors considered uniqueness problem between
two meromorphic functions f and g sharing two sets. But in this particular direction, the first
investigation for uniqueness of a meromorphic function and its shift was due to Zhang [15].

In 2010, Zhang [15] proved the following theorem.

Theorem A ([15]). Let m ≥ 2, n ≥ 2m+ 4 with n and n−m having no common factors. Let a
and b be two non-zero constant such that the equation wn + awn−m + b = 0 has no multiple roots.
Let S = {w : wn + awn−m + b = 0}. Suppose that f(z) is a non-constant meromorphic function
of finite order. Then Ef(z)(S,∞) = Ef(z+ω)(S,∞) and Ef(z)({∞},∞) = Ef(z+ω)({∞},∞) imply
that f(z) ≡ f(z + ω).

Qi-Dou-Yang [13] studied the case m = 1 in the above theorem and with the aid of some extra
supposition reduced the lower bound of the range set as follows.

Theorem B ([13]). Let n ≥ 6 be an integer and let a, b be two non-zero constants such that the
equation wn+awn−1+b = 0 has no multiple roots. Denote S = {w : wn+awn−1+b = 0}. Suppose
f is a non-constant meromorphic function of finite order. Then Ef(z)(S,∞) = Ef(z+ω)(S,∞),

Ef(z)({∞},∞) = Ef(z+ω)({∞},∞) and N(r, f) ≤ n− 3

n− 1
T (r, f) + S(r, f) implies that f(z) ≡

f(z + ω).

As in Theorem A, gcd(n,m) = 1, so we see that the lower bound of cardinality of the range set
considered in Theorem A, is 9, and that in Theorem B, is 6. However, in 2013, Bhoosnurmath-
Kabbur [4] improved Theorem A by reducing the lower bound of the cardinality of range set and
obtained the following result.

Theorem C ([4]). Let n ≥ 8 be an integer and c(6= 0, 1) is a constant such that the equation

P (w) =
(n− 1)(n− 2)

2
wn − n(n − 2)wn−1 +

n(n− 1)

2
zn−2 − c. Let us suppose that S = {w :

P (w) = 0} and f is a non-constant meromorphic functions of finite order, then Ef(z)(S,∞) =
Ef(z+ω)(S,∞) and Ef(z)({∞},∞) = Ef(z+ω)({∞},∞) imply that f(z) ≡ f(z + ω).

By considering “entire” function, Bhoosnurmath-Kabbur [4] obtained the following result.

Theorem D ([4]). Let n ≥ 7 be an integer and c(6= 0, 1) is a constant such that the equation

P (w)=
(n− 1)(n− 2)

2
wn−n(n−2)wn−1+

n(n− 1)

2
zn−2−c. Let us suppose that S={w : P (w)=0}

and f is a non-constant entire functions of finite order, then Ef(z)(S,∞) = Ef(z+ω)(S,∞) and
Ef(z)({∞},∞) = Ef(z+ω)({∞},∞) imply that f(z) ≡ f(z + ω).

Next we point out that in the above mentioned paper, the lower bound of cardinality of the
main range set for meromorphic function has always been stick to 8 without the help of any extra
conditions. Also we note that in none of the papers the authors were engaged to relax the nature
of sharing the range set.
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Considering all the above facts, the following question may appear in one’s mind.

Question 1.1. For the case of two sets sharing, can the lower bound of the range set be further
diminish?

Question 1.2. Is it possible to relax also the nature of sharing of the range sets?

The purpose of the paper is to deal with the above two questions.
In fact, in the paper we shall show that the lower bound of the main range set can significantly

be reduced at the expense of replacing the second set namely the set of poles by a new one.
We would also like to investigate the situation of further diminishing the cardinality of the main

range set at the cost of considering three shared sets problems.
Next for all n ∈ N, a, b, c ∈ C we define

Q(z) =: az2 + bz + c, c =
{b(n− 1)}2

4an(n− 2)
; P(z) =: zn−2Q(z), δna,b =

b(1− n)

2na
.

We also let

σ = −a
(
δna,b
)n−2

(δna,b − α)(δna,b − β),

where α and β be the distinct roots of the equation az2 + bz + c = 0.

For fixed n ≥ 3 we will also denote by d a complex number such that d ∈ Cr
{

0, σ2 , σ
}

.

Since b2

4ac = n(n−2)
(n−1)2 , we get

P ′(z) = nazn−1 + b(n− 1)zn−2 + c(n− 2)zn−3 = zn−3
{
naz2 + b(n− 1)z + c(n− 2)

}
= nazn−3

{
z2 +

b(n− 1)

na
z +

b2(n− 1)2

4a2n2

}
= nazn−3

(
z +

b(n− 1)

2na

)2
= nazn−3

(
z − δna,b

)2
.

We are now at a stage to state the main result of the paper as follows.

Theorem 1.1. Let S1 =
{

0, δna,b

}
, S2 ={z : P(z)+d = 0}, where n ≥ 5, a, b, c ∈ C, b2

4ac = n(n−2)
(n−1)2 ,

d ∈ Cr
{

0, σ
2 , σ

}
. Let f(z) be a finite order meromorphic function satisfying

(i) Ef(z)(S1, 1) = Ef(z+ω)(S1, 1) and Ef(z)(S2, 3) = Ef(z+ω)(S2, 3), or

(ii) Ef(z)(S1, 2) = Ef(z+ω)(S1, 2) and Ef(z)(S2, 2) = Ef(z+ω)(S2, 2),

then f(z) ≡ f(z + ω).

Noting that b2

4ac = n(n−2)
(n−1)2 6= 1, i.e., b2 − 4ac 6= 0, we have the following corollary.

Corollary 1.1. Let S1 =
{

0,− 2b
5a

}
and S2 =

{
z : az5 + bz4 + 4b2

15az
3 + d = 0

}
, where d ∈ C r{

0, 8b5

9375a4 ,
16b5

9375a4

}
, a, b,∈ C. Let f(z) be a finite order meromorphic function satisfying

(i) Ef(z)(S1, 1) = Ef(z+ω)(S1, 1) and Ef(z)(S2, 3) = Ef(z+ω)(S2, 3), or

(ii) Ef(z)(S1, 2) = Ef(z+ω)(S1, 2) and Ef(z)(S2, 2) = Ef(z+ω)(S2, 2),

then f(z) ≡ f(z + ω).

Remark 1.1. If we consider “entire” function in Theorem 1.1, then the same conclusion holds for
the cardinality 4 of the main range set.

Next we would like to explore the situation where the cardinality of the main range set for the
case of “non-entire meromorphic” functions can further be diminished.

In this context, we have the following result.
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Theorem 1.2. Let S1 =
{

0, δna,b

}
, S2 = {z : P(z) + d = 0}, where n ≥ 4, S3 = {∞}, a, b, c ∈ C,

b2

4ac = n(n−2)
(n−1)2 , d ∈ C r

{
0, σ

2 , σ
}

. If for a finite order meromorphic function f(z), Ef(z)(S1, 0)=

Ef(z+ω)(S1, 0), Ef(z)(S2, 3)=Ef(z+ω)(S2, 3) and Ef(z)(S3, 2)=Ef(z+ω)(S3, 2), then f(z)≡f(z+ω).

Corollary 1.2. Let S1 =
{

0,− 3b
8a

}
and S2 =

{
z : az4 + bz3 + 9b2

32az
3 + d = 0

}
, where d ∈ C r{

0, − 27b4

4096a3 ,−
27b4

8192a3

}
, a, b,∈ C and S3 = {∞}. If for a finite order meromorphic function f(z),

Ef(z)(S1, 0) = Ef(z+ω)(S1, 0), Ef(z)(S2, 3) = Ef(z+ω)(S2, 3) and Ef(z)(S3, 2) = Ef(z+ω)(S3, 2),
then f(z) ≡ f(z + ω).

2. Auxiliary definitions and lemmas

The proofs of the main results depend heavily on the value distribution of meromorphic func-
tions, which is available in [8]. We will use standard definitions and notations from this theory.
In particular N(r, a; f) (N(r, a; f)) denotes the counting function (reduced counting function) of
a-points of meromorphic functions f , T (r, f) is the Nevanlinna characteristic function of f and
S(r, f) is used to denote each functions which is of smaller order than T (r, f) when r →∞. Besides
we will need the following notations.

Definition 2.1 ([9]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting function of
simple a points of f . For a positive integer m we denote by N(r, a; f |≥ m)) the counting function
of those a points of f whose multiplicities are not less than m, where each a point is counted
according to its multiplicity. We denote by N(r, a; f |≥ m), the reduced form of N(r, a; f |≥ m).

Definition 2.2 ([14]). Let f and g be meromorphic functions sharing (a, 0) where a ∈ C∪ {∞}.
We denote by NL(r, a; f) (NL(r, a; g)) the reduced counting function of those a-points of f whose
multiplicity corresponding to f is bigger than that corresponding to g.

Definition 2.3 ([10,11]). Let f and g be non-constant meromorphic functions sharing (a, 0). We
denote by N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).

Given meromorphic functions f(z) and f(z + ω) we associate F , G by

F =
P(f)

−d
, G =

P(f(z + ω))

−d
(2.1)

and to F , G we associate H by the following formula

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G − 1

)
, (2.2)

Ψ =
F ′

F − 1
− G′

G − 1
. (2.3)

Lemma 2.1 ([11: Lemma 1]). Let F , G be meromorphic functions sharing (1, 1) and H is given by
(2.2). If H 6≡ 0, then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r,F) + S(r,G).

Next we define χ
n

= 0, for n = 5 and χ
n

= 1, for n 6= 5.
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Lemma 2.2. Let F , G, H are as in (2.1), (2.2) and let Si i = 1, 2 be defined as in Theorem 1.1.
If H 6≡ 0 and a meromorphic function f(z) and f(z + ω) share (S1, p), (S2,m), where 0 ≤ p <∞
and 2 ≤ m <∞, then for b2

4ac = n(n−2)
(n−1)2 ,

N(r,H) ≤ N(r, 0; f | ≥ p+ 1) +N(r, δna,b; f | ≥ p+ 1) +N∗(r, 1;F ,G)

+ χn

{
N(r, 0; f | ≤ p) +N(r, δna,b; f | ≤ p)

}
+N∗(r,∞; f, f(z + ω))

+N0(r, 0; f ′) +N0(r, 0; f ′(z + ω)),

where N0(r, 0; f ′(z)) is the reduced counting function for the points
{
z ∈ C : f ′(z) = 0, f(z) 6= 0,

δna,b; F(z) 6= 1
}

and N0(r, 0; f ′(z + ω)) is defined similarly.

P r o o f. Since F − 1 = P(f(z))+d
−d and G − 1 = P(f(z+ω))+d

−d and Ef (S2,m) = Ef(z+ω)(S2,m), we

get that F and G share (1,m). Next we see that

F ′ = −1

d

{
nafn−1(z) + b(n− 1)fn−2(z) + c(n− 2)fn−3(z)

}
f ′(z)

= −na
d
fn−3(z)

(
f(z)− δna,b

)2
f ′(z),

and

F ′′ = − na

d

{[
(n− 1)f2(z) +

b

na
(n− 1)(n− 2)f(z) +

c

na
(n− 2)(n− 3)

]
fn−4(z) (f ′(z))

2

+ fn−3(z)
(
f − δna,b

)2
f ′′(z)

}
.

It is enough to show that

F ′′

F ′
=

2f ′(z)

f(z)− δna,b
+ (n− 3)

f ′(z)

f(z)
+
f ′′(z)

f ′′(z)
.

Now we have

F ′′

F ′
=

{
(n− 1)f2(z) + b

na (n− 1)(n− 2)f(z) + c
na (n− 2)(n− 3)

}
f(z)(f(z)− δna,b)2

f ′(z) +
f ′′(z)

f ′(z)

=

{
n(f(z)− δna,b)2 − (f(z)− δna,b)(f(z)− 3 δna,b)

}
f(z)(f(z)− δna,b)2

f ′(z) +
f ′′(z)

f ′(z)

=

{
2f(z) + (n− 3)(f(z)− δna,b)

}
f(z)(f(z)− δna,b)

f ′(z) +
f ′′(z)

f ′(z)

=
2f ′(z)

f(z)− δna,b
+ (n− 3)

f ′(z)

f(z)
+
f ′′(z)

f ′(z)
.

Similarly, we get
G′′

G′
=

2f ′(z + ω)

f(z + ω)− δna,b
+ (n− 3)

f ′(z + ω)

f(z + ω)
+
f ′′(z + ω)

f ′(z + ω)
.

Based on the above calculation, we get

H =
2f ′(z)

f(z)− δna,b
− 2f ′(z + ω)

f(z + ω)− δna,b
+

(n− 3)f ′(z)

f(z)
− (n− 3)f ′(z + ω)

f(z + ω)

+
f ′′(z)

f ′(z)
− f ′′(z + ω)

f ′(z + ω)
−
(

2F ′

F − 1
− 2G′

G − 1

)
.
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Since Ef(z)(S1, 0) = Ef(z+ω)(S1, 0), so we must have N(r, 0; f(z)) + N(r, δna,b; f(z)) = N(r, 0;

f(z + ω)) +N(r, δna,b; f(z + ω)).

It can also easily be verified that possible poles of H occur at (i) zeros (δna,b-points) of f and

f(z + ω) when n 6= 5 (ii) poles of f and f(z + ω) with different multiplicities, (iii) 1-points of F
and G with different multiplicities, (iv) zeros of f ′(z) which are not the zeros of f(z)(f(z)− δna,b)
and F − 1, (v) zeros of f(z + ω) which are not the zeros of f(z + ω)(f(z + ω)− δna,b) and G − 1.

Since H has only simple poles, clearly the lemma follows from the above explanations. �

Lemma 2.3. Let F , G, H are as in (2.1), (2.2) and let Si i = 1, 2, 3 be defined as in Theorem 1.2.
If H 6≡ 0 and a meromorphic function f(z) and f(z + ω) share (S1, p), (S2,m), (S3, 0) where

0 ≤ p <∞ and 2 ≤ m <∞, then for b2

4ac = n(n−2)
(n−1)2 ,

N(r,H) ≤ N(r, 0; f | ≥ p+ 1) +N(r, δna,b; f | ≥ p+ 1) +N∗(r, 1;F ,G)

+ χ
n

{
N(r, 0; f | ≤ p) +N(r, δna,b; f | ≤ p)

}
+N∗(r,∞; f, g)

+N0(r, 0; f
′
) +N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function for the points {z ∈ C : f ′(z) = 0, f(z) 6= 0, 1;

F(z) 6= 1} and N0(r, 0; g
′
) is defined similarly.

P r o o f. The proof can be done in the line of proof of Lemma 2.2. �

Lemma 2.4 ([12]). Let f be a non-constant meromorphic function and let

R(f) =

n∑
i=1

aif
i

m∑
j=1

bjf j
,

be an irreducible rational function in f with constant coefficients {ai}, {bj}, where an 6= 0 and
bm 6= 0. Then

T (r,R(f)) = max{n,m} T (r, f) + S(r, f).

The following lemma can be proved in the line of proof of [2: Lemma 2.10].

Lemma 2.5. If meromorphic functions f(z) and f(z + ω) share (1,m), then

N(r, 1; f) +N(r, 1; f(z + ω))−N(r, 1; f |= 1) +
(
m− 1

2

)
N∗(r, 1; f(z), f(z + ω))

≤ 1

2
[N(r, 1; f(z)) +N(r, 1; f(z + ω))] .

Lemma 2.6 ([3: Lemma 2.6]). Let Φ(z) = A(zn−m − 1)2 − B(zn−2m − 1)(zn − 1), where A,B ∈
Cr {0}, AB = n(n−2m)

(n−m)2 , then φ(z) has exactly one multiple zero of multiplicity 4, which is 1, i.e.,

Φ(z) = (z − 1)4
2n−2m−4∏

k=1

(z − βk),

where βi 6= βj, for i 6= j, βk ∈ C− {0, 1}, for i, j ∈ {1, 2, . . . , 2n− 2m− 4}.

Lemma 2.7. For an integer n ≥ 4, if meromorphic functions f(z) and f(z+ω) share
({

0, δna,b
}
, 0
)

and P(f(z)) ≡ P(f(z + ω)) then f(z) ≡ f(z + ω).
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P r o o f. From the given condition we can write

fn−2(z)[f(z)− α][f(z)− β] ≡ fn−2(z + ω)[f(z + ω)− α][f(z + ω)− β]. (2.4)

Clearly (2.4) implies f and g share (∞,∞). As

Ef(z)
({

0, δna,b
}
, 0
)

= Ef(z+ω)
({

0, δna,b
}
, 0
)
,

it follows that if z0 is a zero of f(z) (f(z + ω)), then it can not be a δna,b-point of f(z + ω) (f(z))

as none of α and β is zero. So f(z) and f(z + ω) share (0,∞) and
(
δna,b,∞

)
.

Suppose h(z) = f(z)
f(z+ω) . Clearly h has no zero and no pole.

Now substituting f(z) = h(z)f(z + ω) in (2.4) we get

a(hn − 1)f2(z + ω) + b(hn−1 − 1)f(z + ω) + c(hn−2 − 1) ≡ 0. (2.5)

Suppose h is not a constant. Then by a simple calculation, we have from (2.5) with m = 1, A = b2

and B=4ac in Lemma 2.6, {
a(hn − 1)f(z + ω) +

b

2
(hn−1 − 1)

}2

≡ b2(hn−1 − 1)2 − 4ac(hn−2 − 1)(hn − 1)

4

=
φ(h)

4
=

1

4
(h− 1)4

2n−6∏
k=1

(h− βk),

(2.6)

where βk ∈ Cr {0, 1}(k = 1, 2, . . . , 2n− 6) are distinct.
From (2.6) we see that h− βk (k = 1, 2, . . . , 2n− 6) have multiplicity of order at least 2. So by

the Second Fundamental Theorem, we get

(2n− 6)T (r, h) ≤ N(r,∞;h) +N(r, 0;h) +

2n−6∑
j=1

N (r, βj ;h) + S(r, h)

≤ 1

2

2n−6∑
j=1

N (r, βj ;h) + S(r, h)

≤ (n− 3)T (r, h) + S(r, h),

which is a contradiction for n ≥ 4. So h is a constant. Again since f(z + ω) is non-constant, so
from (2.5), we have hn − 1 = 0, hn−1 − 1 = 0 and hn−2 − 1 = 0. It follows that hd − 1 = 0, where
d = gcd(n, n− 1, n− 2) = 1, i.e., h = 1 and hence f(z) ≡ f(z + ω). �

Lemma 2.8. Let n ≥ 3 and Si, i = 1, 2 be as in Theorem 1.1. Also let meromorphic functions
f(z) and f(z + ω) share (S1, p), (S2,m), where p <∞. If F and G are given by (2.1) and Ψ 6≡ 0,
then

(3p+ 2)
{
N (r, 0; f(z) |≥ p+ 1) +N

(
r, δna,b; f(z) |≥ p+ 1

)}
≤ N∗(r, 1;F ,G) +N(r,∞; f(z)) +N(r,∞; f(z + ω))

+ S(r, f) + S(r, f(z + ω)).

P r o o f. By assumptions F and G share (1,m). Also we see that

Ψ =
nafn−3(z)

(
f(z)− δna,b

)2
f ′(z)

−d(F − 1)
−
nafn−3(z + ω)

(
f(z + ω)− δna,b

)2
f ′(z + ω)

−d(G − 1)
.

Let z0 be a zero or a δna,b-point of f(z) with multiplicity r. Since Ef(z)(S1, p) = Ef(z+ω)(S1, p)

then that would be a zero of Ψ of multiplicity min{(n−3)r+ r−1, 2r+ r−1}, i.e., of multiplicity
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min{(n − 2)r − 1, 3r − 1} = 3r − 1 if r ≤ p and a zero of multiplicity at least min{(n − 3)
(p+1)+p, 2(p+1)+p}, i.e., a zero of multiplicity at least min{(n−2)p+(n−3), 3p+2} = 3p+2
if r > p.

So by a simple calculation, we can write

(3p+ 2)
{
N(r, 0; f(z) |≥ p+ 1) +N

(
r, δna,b; f(z) |≥ p+ 1

) }
≤ N(r, 0; Ψ)

≤ T (r,Ψ)

≤ N(r,∞; Ψ) + S(r,F) + S(r,G)

≤ N∗(r, 1;F ,G) +N∗(r,∞; f(z), f(z + ω))

+ S(r, f(z)) + S(r, f(z + ω))

≤ N∗(r, 1;F ,G) +N(r,∞; f(z)) +N(r,∞; f(z + ω))

+ S(r, f(z)) + S(r, f(z + ω)). �

Lemma 2.9. Let n ≥ 3 and Si, i = 1, 2, 3 be as in Theorem 1.2. Also let meromorphic functions
f(z) and f(z + ω) share (S1, p), (S2,m), (S3, k), where p < ∞. If F , G are given by (2.1) and
Ψ 6≡ 0, then

(3p+ 2)
{
N (r, 0; f(z) |≥ p+ 1)

+N
(
r, δna,b; f(z) |≥ p+ 1

) }
≤ N∗(r, 1;F ,G) +N∗(r,∞; f(z), f(z + ω))

+ S(r, f(z)) + S(r, f(z + ω)).

P r o o f. The proof can be carried out in the line of the proof of Lemma 2.8. �

Lemma 2.10. Let Si, i = 1, 2 be defined as in Theorem 1.1 and F , G, H be given by (2.1)
and (2.2). If meromorphic functions f(z) and f(z + ω) share (S1, p), (S2,m), where 0 ≤ p < ∞,
2 ≤ m <∞ and H 6≡ 0, then

(n+ 1)
{
T (r, f(z)) + T (r, f(z + ω))

}
≤ 2
{
N(r, 0; f(z)) +N

(
r, δna,b; f(z)

)}
+N(r, 0; f(z) |≥ p+ 1)

+N
(
r, δna,b; f(z) |≥ p+ 1

)
+ χ

n

{
N(r, 0; f(z) |≤ p)

+N
(
r, δna,b; f(z) |≤ p

) }
+ 2N(r,∞; f(z))

+ 2N(r,∞; f(z + ω)) +
1

2

[
N(r, 1;F) +N(r, 1;G)

]
−
(
m− 3

2

)
N∗(r, 1;F ,G)

+ S(r, f(z)) + S(r, f(z + ω)).

P r o o f. By applying Second Fundamental Theorem and noting that f(z) is of finite order, we get

(n+ 1)
{
T (r, f(z)) + T (r, f(z + ω))

}
≤ N(r, 1;F) +N(r, 0; f(z)) +N

(
r, δna,b; f(z)

)
+N(r,∞; f(z)) +N(r, 1;G) +N(r, 0; f(z + ω))

+N
(
r, δna,b; f(z + ω)

)
+N(r,∞; f(z + ω))−N0(r, 0; f ′(z))

−N0(r, 0; f ′(z + ω)) + S(r, f(z)) + S(r, f(z + ω)).

(2.7)
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Using Lemmas 2.1, 2.2, 2.4 and 2.5, we see that

N(r, 1;F) +N(r, 1;G)

≤ 1

2

[
N(r, 1;F) +N(r, 1;G)

]
+N(r, 1;F |= 1)−

(
m− 1

2

)
N∗(r, 1;F ,G)

≤ 1

2

[
N(r, 1;F) +N(r, 1;G)

]
+N(r, 0; f(z) |≥ p+ 1) +N (r, 1; f(z) |≥ p+ 1)

+ χ
n

{
N(r, 0; f(z) |≤ p) +N

(
r, δna,b; f(z) |≤ p

) }
+N∗(r,∞; f(z), f(z + ω))−

(
m− 3

2

)
N∗(r, 1;F ,G)

+N0(r, 0; f ′(z)) +N0(r, 0; f ′(z + ω))

+ S(r, f(z)) + S(r, f(z + ω)).

(2.8)

Using (2.8) in (2.7) and noting that

N(r, 0; f(z)) +N
(
r, δna,b; f(z)

)
= N(r, 0; f(z + ω)) +N

(
r, δna,b; f(z + ω)

)
,

the lemma follows. �

Lemma 2.11. Let Si, i = 1, 2, 3 be defined as in Theorem 1.2 and F , G, H be given by (2.1)
and (2.2)). If meromorphic functions f(z) and f(z + ω) share (S1, p), (S2,m) and (S3, k), where
0 ≤ p <∞, 2 ≤ m <∞ and H 6≡ 0, then

(n+ 1)
{
T (r, f(z)) + T (r, f(z + ω))

}
≤ 2
{
N(r, 0; f(z)) +N

(
r, δna,b; f(z)

) }
+N(r, 0; f(z) |≥ p+ 1)

+N
(
r, δna,b; f(z) |≥ p+ 1

)
+ χn

{
N(r, 0; f(z) |≤ p)

+N(r,∞; f(z)) +N(r,∞; f(z + ω))

+N∗(r,∞; f(z), f(z + ω)) +
1

2

[
N(r, 1;F) +N(r, 1;G)

]
−
(
m− 3

2

)
N∗(r, 1;F ,G) + S(r, f) + S(r, g).

P r o o f. The proof can carried out in the lie of the proof of Lemma 2.10 �

Lemma 2.12. Let S1 be defined as in Theorem 1.1 with a2

4b = n(n−2m)
(n−m)2 and F , G be given by (2.1)

where n ≥ 3 and they share (1,m) for 2 ≤ m ≤ ∞. Then

N∗(r, 1;F ,G) ≤ 1

2m− 1

[
N(r,∞; f(z)) +N (r,∞; f(z + ω))

]
+ S(r, f(z)) + S(r, f(z + ω)).

P r o o f. By Lemma 2.8 with p = 0, we have

N∗(r, 1;F ,G) ≤ 1

m

[
N(r, 0; f(z)) +N

(
r, δna,b; f(z)

) ]
+ S(r, f(z))

≤ 1

2m

[
N(r,∞; f(z))+N

(
r,∞; f(z+ω))+N∗(r, 1;F ,G)

) ]
+S(r, f(z))+S(r, f(z+ω)),

i.e.,

N∗(r, 1;F ,G) ≤ 1

2m− 1

[
N(r,∞; f(z)) +N (r,∞; f(z + ω))

]
+ S(r, f(z))

+ S(r, f(z + ω)).
(2.9)

�
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Lemma 2.13 ([14: Lemma 6]). If H ≡ 0, then F and G share (1,∞). If further F and G share
(∞, 0), then F , G share (∞,∞).

Lemma 2.14. Let F and G be given by (2.1) and they share (1,m). Let α1, α2, . . . , αn be the distinct
elements of the set

{
z : azn + bzn−1 + czn−2 + d = 0

}
, where d ∈ Cr

{
0, σ, σ2

}
and n ≥ 3. Then

NL(r, 1;F) ≤ 1

m+ 1

[
N(r, 0; f(z)) +N(r,∞; f(z))−N⊗(r, 0; f ′(z))

]
+ S(r, f(z)),

where N⊗(r, 0; f ′(z)) is the counting function of those 0-points of f ′(z) which are not in
f−1({0, α1, α2, . . . , αn}).

P r o o f. The proof can be carried out along the lines of the proof of [1: Lemma 2.14]. �

3. Proofs of the theorems

P r o o f o f T h e o r e m 1.1. Part (i). Let f and f(z + ω) be non-constant meromorphic function
such that Ef (S1, 1) = Ef(z+ω)(S1, 1) and Ef (S2, 3) = Ef(z+ω)(S2, 3). Suppose F and G be given
by (2.1). Then F and G share (1, 3). We consider the following cases.
Case 1. Suppose that Ψ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then for n = 5 using Lemma 2.10 for p = 1, m = 3, Lemma 2.8 for p = 1,
p = 0, Lemma 2.4 and Lemma 2.12 for m = 3, we obtain

(n+ 1)
{
T (r, f(z)) + T (r, f(z + ω))

}
≤ 2
{
N(r, 0; f(z)) +N

(
r, δna,b; f

) }
+

1

5

{
N(r,∞; f) +N(r,∞; f(z + ω))

+N∗(r, 1;F ,G)
}

+ 2N(r,∞; f(z)) + 2N(r,∞; f(z + ω)) +
1

2

[
N(r, 1;F)

+N(r, 1;G)
]
− 3

2
N∗(r, 1;F ,G)

+ S(r, f(z)) + S(r, f(z + ω))

≤ 16

5

{
N(r,∞; f(z)) +N(r,∞; f(z + ω))

}
+
n

2

[
T (r, f(z)) + T (r, f(z + ω))

]
− 3

10
N∗(r, 1;F ,G) + S(r, f(z)) + S(r, f(z + ω))

≤
{n

2
+

16

5

}[
T (r, f(z)) + T (r, f(z + ω))

]
+ S(r, f(z)) + S(r, f(z + ω))

≤
{n

2
+

16

5

}[
T (r, f(z)) + T (r, f(z + ω))

]
+ S(r, f(z)) + S(r, f(z + ω))

which contradicts n = 5.

For n ≥ 6, in a similar way as above we get

(n+ 1)
{
T (r, f(z)) + T (r, f(z + ω))

}
≤
{
n

2
+

7

2

}[
T (r, f(z)) + T (r, f(z + ω))

]
+ S(r, f(z)) + S(r, f(z + ω)),

which is again a contradiction for n ≥ 6.
The rest of the proof can be carried out in the line of proof of part (i) of this theorem.
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Subcase 1.2. Let H ≡ 0. Then from (2.2) we get

1

F − 1
≡ A
G − 1

+ B, (3.1)

where A(6= 0) and B are two constants. So in view of Lemma 2.4, from (3.1) we get

T (r, f(z)) = T (r, f(z + ω)) +O(1). (3.2)

Subcase 1.2.1. Suppose B 6= 0, then from (3.1) we get

F − 1 ≡ G − 1

BG +A− B
. (3.3)

Subcase 1.2.1.1. If A− B 6= 0, then noting that B−AB 6= 1, from (3.3) we get

N
(
r,
B −A
B

;G
)

= N(r,∞;F).

Now let us consider the following subcases.

Subcase 1.2.1.1.1. Suppose that B−AB 6= σ
d .

Therefore in view of equation (3.2) using the Second Fundamental Theorem and noting that
f(z) is of finite order, we have

(n+ 1)T (r, f(z + ω)) ≤ N(r, 0; f(z + ω)) +N(r, δna,b; f(z + ω)) +N(r,∞; f(z + ω))

+N

(
r,
B −A
B

;G
)

+ S(r, f(z + ω))

≤ 3 T (r, f(z + ω)) +N(r,∞; f(z)) + S(r, f(z + ω))

≤ 4 T (r, f(z + ω)) + S(r, f(z)),

which contradicts n ≥ 4.

Subcase 1.2.1.1.2. Suppose that B−AB = σ
d . Since b2

4ac = n(n−2)
(n−1)2 , then from Lemma 2.2, we know

that

G′ = −na
d
fn−3(z + ω)

(
f(z + ω)− δna,b

)2
f ′(z + ω). (3.4)

We note that σ 6= 0, otherwise n will be purely imaginary, it follows that P(z) + d is critically
injective. Since any critically injective polynomial can have at most one multiple zero, we have

afn(z + ω) + bfn−1(z + ω) + cfn−2(z + ω) + σ =
(
f(z + ω)− δna,b

)3 n−3∏
j=1

(f(z + ω)− ηj),

where ηj ’s are (n− 3) distinct zeros of azn + bzn−1 + czn−2 + σ such that ηj 6= δna,b, 0.

Next from (3.3) we have

B(F − 1) ≡ −d(G − 1)

(f(z + ω)− δna,b)3
n−3∏
j=1

(f(z + ω)− ηj)
. (3.5)

Since Ef(z)(S1, 0) = Ef(z+ω)(S1, 0) so δna,b points of f(z + ω) are not poles of F and hence δna,b is

an e.v.P. of f(z + ω). Furthermore each ηj point of f(z + ω) of multiplicity p is a pole of f(z) of
multiplicity q (say).
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Therefore p = nq ≥ n. So in view of (3.2) and by applying Second Fundamental Theorem and
noting that f(z) is of finite order, we get

(n− 2)T (r, f(z + ω)) ≤ N(r, 0; f(z + ω)) +N(r, δna,b; f(z + ω)) +N(r,∞; f(z + ω))

+

n−3∑
i=1

N(r, ηj ; f(z + ω)) + S(r, f(z + ω))

≤
(

2 +
n− 3

n

)
T (r, f(z + ω)) + S(r, f(z + ω)),

which contradicts n ≥ 5.
Subcase 1.2.1.2. If A− B = 0 then from (3.3) we have

G − 1

F − 1
≡ BG = B f

n−2(z + ω)Q(f(z + ω))

−d
, (3.6)

i.e., 0’s of f(z + ω) and Q(f(z + ω)) are poles of F . As b2 6= 4ac, we know that, the zeros α, β
of Q(z) are simple. Now let each α and β-point of f(z + ω) is of multiplicity p then it is a pole
of f of multiplicity q for some q ≥ 1. Then from (3.6) we get p = nq i.e., p ≥ n. Similarly as
Subcase 1.2.1.1.2, we can prove here that ‘0’ is an e.v.P. of f(z + ω).

Next using the Second Fundamental Theorem and noting that f(z) is of finite order, we get

T (r, f(z + ω)) ≤ N(r, α; f(z + ω)) +N(r, β; f(z + ω)) +N(r, 0; f(z + ω)) + S(r, f(z + ω))

≤ 2

n
T (r, f(z + ω)) + S(r, f(z + ω)),

which contradicts n ≥ 3.
Subcase 1.2.2. Suppose B = 0, then from (3.1), we get that

G − 1 = A(F − 1),

i.e.,
G′ = AF ′,

which implies Ψ ≡ 0, a contradiction.
Case 2. Let Ψ ≡ 0. Then on integration we get

G − 1 = A(F − 1),

i.e.,
afn(z + ω) + bfn−1(z + ω) + cfn−2(z + ω)

≡ A
(
afn(z) + bfn−1(z) + cfn−2(z) + d

A− 1

A

)
,

(3.7)

i.e.,
afn(z + ω) + bfn−1(z + ω) + cfn−2(z + ω) + d(1−A)

≡ A
(
afn(z) + bfn−1(z) + cfn−2(z)

)
.

(3.8)

Subcase 2.1. Let A 6= 1, then as d 6= 0, we have d (A−1)
A 6= 0. Noting that σ 6= 0, we have the

following subcases.

Subcase 2.1.1. Suppose d (A−1)
A = σ, then we claim that d(1 − A) 6= σ. For if d(1 − A) = σ,

i.e., A = d−σ
d and since d (A−1)

A = σ, i.e., A = d
d−σ , it follows that d−σ

d = d
d−σ , i.e., d = σ

2 ,

a contradiction. Thus azn + bwn−1 + cwn−2 + d(1 − A) = 0 has only simple roots say αi for
i = 1, 2, . . . , n. So from (3.8) we get

n∏
i=1

(f(z + ω)− αi) ≡ Afn−2(z)(af2(z) + bf(z) + c). (3.9)
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Since Ef(z)(S1, 0) = Ef(z+ω)(S1, 0) so from (3.9) obviously ‘0’ is an e.v.P. of f(z). So δna,b points

and 0 points of f(z + ω) corresponds to the ‘0’ point of f . Hence using (3.2) and the Second
Fundamental Theorem and noting that f(z) is of finite order, in view of (3.2) and (3.9) we get

nT (r, f(z + ω)) ≤
n∑
i=1

N(r, αi; f(z + ω)) +N(r, 0; f(z + ω))

+N(r, δna,b; f(z + ω)) + S(r, f(z+ω))

≤ 3T (r, f(z)) + S(r, f(z + ω)),

which is a contradiction for n ≥ 4.
Subcase 2.1.2. Suppose d (A−1)

A 6= σ. So, azn + bzn−1 + czn−2 + d (A−1)
A = 0 has only simple roots

say α′i for i = 1, 2, . . . , n.

Therefore from (3.7), we have

fn−2(z + ω)(af2(z + ω) + bf(z + ω) + c) ≡ A
n∏
i=1

(f − α′i). (3.10)

By the same argument as used in Subcase 2.1.1., we get a contradiction for n ≥ 5.
Subcase 2.2. Let A = 1 then we get P(f(z + ω)) ≡ P(f(z)). Now applying Lemma 2.7, we get
f(z) ≡ f(z + ω).

Part(ii). Let f and f(z + ω) be non-constant meromorphic function such that Ef (S1, 2) =
Ef(z+ω)(S1, 2) and Ef (S2, 2) = Ef(z+ω)(S2, 2). Suppose F and G be given by (2.1). Then F and
G share (1, 2). We consider the following cases.
Case 1. Suppose that Ψ 6≡ 0.
Subcase 1.1. Let H 6≡ 0. Then for n = 5 using Lemma 2.10 for p = 2, m = 2, Lemma 2.8 for p = 2,
p = 0, Lemma 2.4 and Lemma 2.12 for m = 2, we obtain

(n+ 1)
{
T (r, f(z)) + T (r, f(z + ω))

}
≤ 2
{
N(r, 0; f(z)) +N

(
r, δna,b; f

) }
+

1

8

{
N(r,∞; f)

+N(r,∞; f(z + ω)) +N∗(r, 1;F ,G)
}

+ 2N(r,∞; f(z)) + 2N(r,∞; f(z + ω))

+
1

2

[
N(r, 1;F) +N(r, 1;G)

]
− 1

2
N∗(r, 1;F ,G)

+ S(r, f(z)) + S(r, f(z + ω))

≤ 25

8

{
N(r,∞; f(z)) +N(r,∞; f(z + ω))

}
+
n

2

[
T (r, f(z)) + T (r, f(z + ω))

]
+

5

8
N∗(r, 1;F ,G) + S(r, f(z)) + S(r, f(z + ω))

≤
{n

2
+

25

8

}[
T (r, f(z)) + T (r, f(z + ω))

]
+

5

24

{
N(r,∞; f(z)) +N(r,∞; f(z + ω))

}
+ S(r, f(z)) + S(r, f(z + ω))

≤
{n

2
+

10

3

}[
T (r, f(z)) + T (r, f(z + ω))

]
+ S(r, f(z)) + S(r, f(z + ω)),

which is a contradiction.
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For n ≥ 6, in a similar way as above, we get

(n+ 1)
{
T (r, f(z)) + T (r, f(z + ω))

}
≤
{
n

2
+

7

2
+

1

3

}[
T (r, f(z))

+ T (r, f(z + ω))
]

+ S(r, f(z)) + S(r, f(z + ω)),

which is again a contradiction since n ≥ 6.

The rest of the proof can be dealt same as in the line of proof of part (i) of this theorem. �

P r o o f o f T h e o r e m 1.2. The proof can be carried out exactly in the same line of the proof of
Theorem 1.1 using Lemmas 2.3, 2.9 and 2.11. So we omit the details. �

4. Some relevant discussions and examples

We are first going to prove the following proposition.

Proposition 4.1. Any two non-constant meromorphic functions f and g satisfying

f + g = − 2b

5a
(4.1)

share the set S =
{
z : az5 + bz4 + 4b2

15az
3 + 8b5

9375a4 = 0
}

. That is to show that two distinct

meromorphic functions f and g satisfying Corollary 1.1 when d = 8b5

9375a4 .

P r o o f. Suppose f + g = − 2b
5a and let c = 4b2

15a . Then with this transformation, we have

af5 + bf4 + cf3 ≡ f3
(
af2 + bf + c

)
≡ −

(
g +

2b

5a

)3{
a
(
g +

2b

5a

)2
− b
(
g +

2b

5a

)
+

4b2

15a

}
≡ −

(
ag5 + bg4 + cg3 +

16 b5

9375 a4

)
.

i.e.,

af5 + bf4 + cf3 +
8 b5

9375 a4
≡ −

(
ag5 + bg4 + cg3 +

8 b5

9375 a4

)
.

This shows that f and g share the set S CM. This completes the proof of the proposition. �

In view of the Proposition 4.1, for d = 8b5

9375a4 , we are now going to show, from the following
examples, rather to say from the following counter examples that f(z) and g(z) = f(z+ω) satisfy
(4.1) as well as all the conditions of Corollary 1.1, but they are not identical.

Example 1. Let

f(z) =
−4b

5a

sin4
(
πz
2ω

)
2− sin2

(
πz
ω

) .
It is clear that f(z) + f(z + ω) = − 2b

5a , but f(z) 6≡ f(z + ω).
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Example 2. Let

f(z) =
−b P (ez) + 5a sin2

(
πz
ω

)
5aP (ez)

,

where P (z) =
n∑
i=1

a2i−1z
2i−1, ai ∈ C with a2n−1 6= 0, where eω = −1. It is clear that f(z) +

f(z + ω) = − 2b
5a , but f(z) 6≡ f(z + ω).

The following example shows that the function f considered in Corollary 1.1 could not be of

infinite order when d = 8b5

9375a4 .

Example 3. Let

f(z) =
− 2b

5a

1 + eez
.

We choose the constant c such that eω = −1. It is clear that f(z) + f(z+ω) = − 2b
5a and satisfying

all the conditions of Corollary 1.1 but f(z) 6≡ f(z + ω).

5. An open question

In this paper, we have been able to reduce the lower bound of the cardinality of the main range
set to a large extent though we are not sure whether this is the best possible result. So the following
question is inevitable.

Question 5.1. What is the best possible cardinality of two set sharing problem for the uniqueness
of a meromorphic function and its shift operator?

REFERENCES

[1] BANERJEE, A.: Some uniqueness results on meromorphic functions sharing three sets, Ann. Polon. Math.
92(3) (2007), 261–274.

[2] BANERJEE, A.—BHATTACHARAJEE, P.: Uniqueness and set sharing of derivatives of meromorphic func-
tions, Math. Slovaca 61(2) (2011), 197–214.

[3] BANERJEE, A.—MALLICK, S.: On the characterizations of the new class of strong uniqueness polynomials
generating unique range sets, Comput. Math. Funct. Theo. 17 (2017), 19–45.

[4] BHOOSNURMATH, S. S.—KABBUR, S. R.: Value distribution and uniqueness theorems for difference of
entire and meromorphic functions, Int. J. Anal. Appl. 2(2) (2013), 124–136.

[5] CHEN, B.—CHEN, Z.: Meromorphic functions sharing two sets with its difference operator, Bull. Malays.
Math. Soc. 35(3) (2012), 765–774.

[6] CHEN, B.—CHEN, Z.—LI, S.: Uniqueness of difference operators of meromorphic functions, J. Inequal. Appl.
48 (2012), 1–19.

[7] FUJIMOTO, H.: On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math. 122 (2000),
1175–1203.

[8] HAYMAN, W. K.: Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[9] LAHIRI, I.: Value distribution of certain differential polynomials, Int. J. Math. Math. Sci. 28(2) (2001), 83–91.

[10] LAHIRI, I.: Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193–206.
[11] LAHIRI, I.: Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory and

Application 46 (2001), 241–253.
[12] MOKHONKO, A. Z.: On the Nevanlinna characteristics of some meromorphic functions, Funct. Anal. Appl.

14 (1971), 83–87.
[13] QI, X. G.—DOU J.—YANG, L. Z.: Uniqueness and value distribution for difference operator of meromorphic

function, Adv. Difference Equ. 32 (2012), 1–9.
[14] YI, H. X.: Meromorphic functions that share one or two values II, Kodai Math. J. 22 (1999), 264–272.
[15] ZHANG, J. L.: Value distribution and sets of difference of meromorphic functions, J. Math. Anal. Appl. 367(2)

(2010), 401–408.

571

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 11:04 PM



ABHIJIT BANERJEE — MOLLA BASIR AHAMED

Received 15. 10. 2017
Accepted 2. 8. 2018

* Department of Mathematics
University of Kalyani
Nadia, West Bengal 741235
INDIA

E-mail : abanerjee kal@yahoo.co.in
abanerjeekal@gmail.com

** Department of Mathematics
Kalipada Ghosh Tarai Mahavidyalya
West Bengal, 734014
INDIA

E-mail : basir math kgtm@yahoo.com
bsrhmd117@gmail.com

572

Brought to you by | provisional account
Unauthenticated

Download Date | 1/7/20 11:04 PM


	1. Introduction, definitions and results
	2. Auxiliary definitions and lemmas
	3. Proofs of the theorems
	4. Some relevant discussions and examples
	5. An open question
	REFERENCES

