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Abstract In this paper, we propose a novel adaptive
median-based lifting filter for image de-noising which has
been corrupted by homogeneous salt and pepper noise. The
median-based lifting filter removes the noise of the input
image by calculating the median of the neighboring signifi-
cant pixels. The algorithm for image noise removal uses the
lifting scheme of the second-generation wavelets in conjunc-
tion with the proposed adaptive median-based lifting filter.
The experimental results demonstrate the efficiency of the
proposed method. The proposed algorithm is compared with
all the basic filters, and it is found that our method outper-
forms many other algorithms and it can remove salt and pep-
per noise with a noise level as high as 90%. The algorithm
works exceedingly well for all levels of noise, as illustrated
in terms of peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) measures.

Keywords Adaptive median filter · Salt and pepper noise ·
Second-generation wavelets · Lifting filter

P. S. J. Sree · R. Siddavatam · R. Verma
Department of Computer Science & IT,
Jaypee University of Information Technology, Waknaghat,
Solan, HP, 173215, India
e-mail: jayasree.syamala@gmail.com

R. Siddavatam
e-mail: srajesh@juit.ac.in

P. Kumar (B)
Department of Electronics and Communication Engineering,
Jaypee University of Information Technology,
Waknaghat, Solan, HP, 173215, India
e-mail: pradeep.kumar@juit.ac.in

1 Introduction

In the process of image acquisition and transmission, the dig-
ital images are often corrupted with impulse noise. This is
mainly because of the errors in the sensors or in the com-
munication channel. It is highly imperative that this noise
be removed prior to its subjection for further processing,
such as edge detection, image segmentation, object recogni-
tion, and pattern recognition. Various methods [1–10] have
been developed for impulse noise removal from corrupted
images. Median filters have been extensively used for the
removal of impulse noises. They are simple yet very effec-
tive in the removal of salt- and pepper-type impulse noise.
Median filters often tend to modify good pixels too; there-
fore, impulse detection algorithms play a crucial role in noise
removal.

In [4], the progressive switching median (PSM) filter has
been developed for removing impulse noise from highly cor-
rupted images. It works by using an impulse detection algo-
rithm and then iteratively detecting and filtering impulse
noise, and hence, it performs heavy computation. In [5],
a detail-preserving adaptive median filter has been pro-
posed for image processing. In [6], alpha-trimmed mean
has been used in impulse noise detection and then the
noisy pixels are corrected with the help of original value
of the pixel and the median of the window of the noisy
pixel.

Second-generation wavelets developed by Swelden [7]
and [11] have been efficiently used for many applications of
image processing. Generating set of most significant sam-
ples for de-noising and then using them to generate an
image is a highly non-linear and computationally expen-
sive task. A set of significant de-noising samples is obtained
after estimating the detail coefficients. Highly sparse, noise-
removed significant samples are used to approximate an
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image. In [8], a decision-based median filter, which con-
sists of two functions decision making and noise filtering,
has been used for noise removal. In [9], an adaptive median-
based filter has been used for noise removal from images
corrupted with various kinds of noises. In [10], an iter-
ative procedure utilizing adaptive center-weighted median
filter has been used for removing random-valued impulse
noise.

The general scheme followed for noise removal using
first-generation wavelets is described as follows. Con-
sider an original image denoted as A and noisy image
denoted as B. Here, we assume that the original image
A is corrupted by homogeneous salt and pepper noise
resulting in the image B. Hence, we get a model of the
type

B(x, y) = A(x, y) + ε(x, y) (1)

where ε is homogeneous salt and pepper noise.
In this paper, we have proposed a novel median-based

lifting filter using second-generation wavelets which is com-
bination of work [2] and [3] developed by Siddavatam Rajesh
et al. We use the lifting scheme first for separating the signifi-
cant pixels from the insignificant pixels and then for filtering
the corrupted image using the median-based lifting filter. The
lifting filter was used in [2] by us for noise removal. Upon
improving the lifting filter in [2] by calculating the median
value of the neighboring pixels of the corrupted pixel in its
window, we were able to improve the results previously gen-
erated in [2]. The proposed algorithm gives excellent results
for all levels of noise. The rest of the paper is organized as
follows. Section 2 describes the proposed adaptive median-
based lifting filter. In Sect. 3, the theoretical framework for
second-generation wavelets is elaborated. In Sect. 4, our pro-
posed lifting algorithm for image noise removal has been
given. In Sect. 5, the significance measures PSNR and SSIM
have been described to assess the quality of the de-noised
images. The efficiency of our proposed method with results

has been shown in Sect. 6. Finally, Sect. 7 concludes the
work.

2 Proposed adaptive median-based lifting filter

2.1 Review of the adaptive median filter [1]

Let ax,y , for (x, y) ∈ A ≡ {1, . . . , M} × {1, . . . , N }, be
the gray level of a true M –by –N image, A at pixel loca-
tion (x, y), and

[
smin,smax

]
be the dynamic range of A, i.e.,

smin ≤ ax,y ≤ smax for all (x, y) ∈ A (Fig. 1).
Let B is a noisy image in the classical salt-and-pepper

noise model, the observed gray level at pixel location (x, y)

given by:

bx,y =
⎧
⎨

⎩

smin with probability p
smax with probability q
ax,y with probability 1 − r

where r = p+q defines the noise level. Let Sw
x,y be a window

size of w × w centered at (x, y) i.e.,

Sw
x,y = {(k, l) : |k − i | ≤ w and | j − l| ≤ w}

And let wmax×wmax be the maximum window size. The algo-
rithm tries to identify the noise candidates and then replace
each bx,y by the median of the pixels in Sw

x,y .

2.2 Algorithm for adaptive median filter

For each pixel location do the following:

1. Initialize w = 3.
2. Compute Smin,w

x,y , Smed,w
x,y and Smax,w

x,y , which are the min-
imum, median, and maximum values of the pixel values
in the window, respectively.

3. If Smin,w
x,y < Smed,w

x,y < Smax,w
x,y , then go to step 5, other-

wise set w = w + 2.
4. If w ≤ wmax, go to step 2, otherwise replace bx,y by

Smed,wmax
x,y .

Fig. 1 General framework of
lifting filter
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5. If Smin,w
x,y < bx,y < Smax,w

x,y , then bx,y is not a noise
candidate, else replace bx,y by Smed,w

x,y .

The most seminal contributions for the adaptive median
filter related to noise smoothing filter for images have been
elaborated in [12–14], and [15].

The adaptive structure of the filter ensures that most of
the impulse noise is detected at a high noise level provided
that the window size is large enough. Notice that the noise
candidates are replaced by the median, while the remaining
pixels are left unaltered.

3 Theoretical framework for second-generation
wavelets

The first-generation wavelets could be easily used for
periodic and infinite domain signals. But there was no
clear-cut way of using it for bounded domain signals.
Thus, the second-generation wavelets came into picture. The
second-generation wavelets have all the useful properties like
time-frequency localization and fast implementation of the
first-generation wavelets in addition to being able to repre-
sent the signals which are bounded. This has been achieved by
removing the translation and dilation of the mother wavelet.
Instead, we use our Lifting Scheme proposed by Siddavatam
Rajesh et al. in [3]. The main advantage of second-genera-
tion lifting is that it does not use any Fourier analysis and all
functions are derived in the spatial domain. The use of spatial
domain results in an intuitively appealing solution.

Lifting scheme is better suited for image de-nosing as it
can easily be generalized to complex geometric situations of
high non-uniformity. The lifting scheme is a tool for con-
structing second-generation wavelets [7] and [11], which
are no longer, dilates and translates of one single function
the mother wavelet. In contrast to first-generation wavelets,
which used the Fourier transform for wavelet construction,
a construction using lifting is performed exclusively in spa-
tial domain, and thus, wavelets can be custom-designed for
complex domains like irregular noise samples.

A new mathematical formulation proposed by Swelden
[16] based on spatial construction of the wavelets is called
the lifting-based wavelet transform. The underlying princi-
ple of this approach [16,17] is to break up the high-pass
and the low-pass wavelet filter into a sequence of smaller
filters that in turn can be converted into a sequence of alter-
nating upper and lower triangular matrices and a diagonal
matrix with constants. The factorization is obtained by using
an extension of the Euclidean algorithm. The resulting for-
mulation can be implemented by means of banded matrix
multiplications [18].

Let h̃(z) and g̃(z) be the low-pass and high-pass analy-
sis filters and h(z) and g(z) be the low-pass and high-pass

synthesis filters. The polyphase representation of the filter h
is expressed as (Fig. 2):

h(z) = he(z
2) + z−1ho(z

2) (2)

where he contains the even filter coefficients and ho con-
tains the odd filter coefficients of the FIR filter. Similarly, the
polyphase representation of the filters g(z), h̃(z), and g̃(z) is
expressed as follows:

g(z) = ge(z
2) + z−1go(z

2) (3)

h̃(z) = h̃e(z
2) + z−1h̃o(z

2) (4)

g̃(z) = g̃e(z
2) + z−1g̃o(z

2) (5)

Based on the formulation in Eq. (2)–(5) , the polyphase
matrix representation of the filters can be given as follows:

P(z) =
[

he(z) ge(z)
ho(z) go(z)

]

P̃(z) =
[

h̃e(z) g̃e(z)
h̃o(z) g̃o(z)

]

The two matrices, i.e., P(z) and P̃(z), are called dual of
each other. The two polyphase matrices must satisfy the fol-
lowing condition for perfect reconstruction:

P(z)P̃(z−1)T = 1 (6)

When the determinant of P(z) is unity, the synthesis filter
bank (h, g) is called complementary and so is the analysis
filter pair (h̃, g̃). However, when h(z) = h̃(z) = g(z) =
g̃(z) = 1, the DWT simply splits an input signal into two
subsequences, one with all the odd samples and one with all
the even sequences. This is called the lazy wavelet transform.
The lifting scheme [16] is an easy relationship between per-
fect reconstruction filter pairs that have the same low-pass
or high-pass filter. One can then start from the Lazy wavelet
and use lifting to gradually build one’s way up to a multires-
olution analysis with particular properties (Fig. 3).

The lifting technique used in the present approach is pri-
mal lifting, which lifts the low-pass subband with the help of
high- pass subband. According to the lifting theorem [17,18],
if the wavelet filter pair (h, g) is complementary, then any
other filter gnew that is complementary is of the form

gnew(z) = g(z) + h(z)s(z2) (7)

)z(g~ 1−

)z(P
~ 1− )z(P

LP

2 2

+

2 2
HP

Fig. 2 Polyphase representation of wavelet transform: first subsample
into even and odd, then apply the dual polyphase matrix. For the inverse
transform: first apply the polyphase matrix and then join even and odd
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)z(g~ 1−

)z(s

)z(h)z(h
~ 1− )z(h )z(h

)z(g

)z(s

Fig. 3 The primal lifting scheme: first applying a lazy wavelet trans-
form and then lifting the low-pass subband with the help of the high-pass
subband

The polyphase matrix of gnew(z) can be defined as

Pnew(z) =
[

he(z) ge(z) + he(z)s(z)
ho(z) go(z) + ho(z)s(z)

]

Using Eq. (6), the above polyphase matrix of gnew(z) can be
modified as

Pnew(z) = [P(z)]−1
[

1 0
−s(z−1) 1

]

Hence, the lifting created a new low-pass filter

h̃new(z) = h̃(z) − g̃(z)s(z−2) (8)

The lifting wavelet transform essentially means first applying
the lazy wavelet transform on the input stream, then execut-
ing primal lifting, and finally scaling the output streams to
produce low-pass and high-pass subbands.

4 Proposed lifting algorithm

Wavelets and approximations of the data can be constructed
on the basis of this hierarchical structure of partitioning.
In this second-generation wavelet representation, the process
does not depend on a regular setting for the data; therefore,
it can be used in both the regular and irregular data sets for
noise sampling. This is an important advantage of the lifting
scheme.
The proposed lifting algorithm is performed in two steps:

4.1 Algorithm I : image lifting algorithm

Consider a data set to be partitioned into two groups: signif-
icant pixels sig and insignificant pixels insig. If the original
pixel set can be partitioned in a hierarchical structure, then
the above process can be iteratively applied to different sets.
A hierarchical structure has the following form

sig0 ⊂ sig1 ⊂ sig2 · · · ⊂ sign (9)

where sign denotes the finest representation of the geometry.
sign can be partitioned into sign−1 and insign−1; then
sign−1 can be partitioned into sign−2 and insign−2 and
so on. Note that the larger number in superscripts represents

finer resolution.

sigk ∪ insigk = sigk+1, k = 0, 1, 2, . . . , n − 1 (10)

4.1.1 Median-based lifting filter (med−li f t)

The median-based lifting filter (med−li f t) is used for find-
ing the correct filtered value by which a corrupted noisy pixel
should be replaced. For finding the filtered value for a noisy
pixel under consideration, the median-based lifting filter con-
siders a window around the noisy pixel and finds the fil-
tered median value of the non-impulse noise pixels which
are neighbors of the corrupted pixel and are present in that
window. In case there is no non-impulse neighbor of the
corrupted pixel in the current window, the filter increases
the window size to the next possible higher value and cal-
culates the filtered median value. The median-based lifting
filter always uses a window size of 3 × 3; the first it deter-
mines the filtered value for a corrupted pixel. As mentioned
above if there is no non-impulse neighbor of the corrupted
pixel in this window of size 3 × 3, the window size is then
increased to the next higher odd integer and the window size
becomes 5 × 5. In this way, the filter dynamically increases
the window size as and when needed. After this when the fil-
ter considers some other noisy pixel, the initial window size
is again 3 × 3. The non-impulse neighbors of the corrupted
pixel in a window of size W × W are given by

�W
x,y = ( j = j1, j2)|x − W − 1

2
≤ j1 ≤ x + W − 1

2
,

y − W − 1

2
≤ j2 ≤ y + W − 1

2
(11)

where (x, y) are the coordinates of the corrupted pixel. Here,
W can be any odd integer greater than or equal to 3. But
while calculating the filtered value for a new corrupted pixel,
its value is 3 and can be increased later as explained above.
After finding the non-impulse neighbors above, the median-
based lifting filter can then calculate the filtered median value
medn

x,y as given below:

medn
x,y = med_lift(Bn

j | j ∈ �W
x,y) (12)

where n is the current number of iteration of the image de-
noising algorithm and the med_lift is defined as the adaptive
median-based lifting filter as described above.

The image lifting algorithm works by following the three
steps of the lifting scheme split, predict, and update.
Input: Noisy image Bx,y or B0

x,y

1. Lifting (Split): If Bn
x,y = 0 or Bn

x,y = 255 then

Xn
x,y = Bn

x,y (13)
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2. (a) Predict: If Bn
x,y = 0 or Bn

x,y = 255, using (11) and
(12), �W

x,y and medn
x,y are calculated respectively.

(b) Find Detail

dn+1
x,y = |Bn

x,y − dn
x,y | (14)

(c) Build significant and insignificant sets
If (dn

x,y > T )

sign+1
x,y = Bn

x,y (15)

else

insign+1
x,y = Bn

x,y (16)

3. Update: For all the significant pixels update

Bn
x,y = medn

x,y, if Bn+1
x,y ∈ sign+1

x,y (17)

4. Repeat steps 1 to 3 on the output of the previous run
until satisfactory results are obtained.

Output: Restored Image Bn+1.

In the first step, we lift (split) all the pixels of the cor-
rupted input image that are suspected to be noisy pixels. In
the case of salt and pepper noise, this is done by separat-
ing those pixels whose grayscale image value is either 0 or
255 because these are the grayscale values that correspond
to pepper and salt. Images corrupted by salt and pepper noise
are contaminated with pixels which have either a very high
value (255 in grayscale image) or a very low value (0 in a
grayscale image). For the current iteration n of the algorithm,
these pixels are stored in an array Xn+1

x,y . Now some of the
pixels in the array Xn+1

x,y can also be image data. To separate
those pixels, we perform the predict step of our algorithm. In
this step, first we find medn

x,y using the median-based lifting
filter. Then, we calculate the detail d using Eq. (14). Then,
the detail d of the pixel (x, y) are compared under consider-
ation with threshold T to determine whether this pixel (x, y)

is corrupted or not. As the data of images are smooth varying,
the neighboring pixels of any pixel will not have values that
are significantly different from its value. Hence, the filtered
value found by the median-based lifting filter will also be
close to the value of the pixel (x, y) if it is image data and
not a noisy pixel. This is the reason, why upon comparing the
detail with a suitably narrow threshold, we can successfully
separate image data from noisy data. In our work, we put
the noisy pixels and image pixels in iteration n in sign

x,y and
insign

x,y . Lastly, in the update step, we correct all the pixels
in sign+1

x,y with their filtered median value, where (n + 1) is
the current number of iteration for which the algorithm has
been executed. After executing the three steps above if the
result is unsatisfactory, we execute the algorithm again on
the output of the previous run.

4.2 Algorithm II : significant noise removal algorithm

The following steps are used to obtain a nested subset of
significant noise pixels. Input: Noisy Image B

1. Let Bn+1 = B : data set (sigk ∪ insigk)

2. Use Algorithm I to find a set of new significant noise
pixels (N P) to be filtered using the lifting filter.

3. Get sigk = sigk+1 − N P .
4. Repeat the step 2 to 3 to get the desired image quality

(sigk).
5. Check the quality of image obtained from the data. The

process is stopped, if a good image is generated.

Output: Denoised Image Bn+1.

5 Significance measures

5.1 PSNR

We have tested our proposed algorithm for different levels
of noise ranging from as low as 5% to as high as 90%. The
experimental results have been gauged using the mean square
error (MSE) and peak signal-to-noise ratio (PSNR) measures
that have been given below.

M SE = 1

mn

m−1∑

x=0

n−1∑

y=0

(A(x, y) − R(x, y))2 (18)

where A and R are the original and the restored images hav-
ing a resolution of m*n.

P SN R = 10 log10

(
max2

M SE

)
(19)

where max is the maximum possible pixel value of the image
and its value is 255 in the case of a grayscale image.

5.2 SSIM

The SSIM index [19] is a full reference metric, in other
words, the measuring of image quality based on an initial
uncompressed or distortion-free image as reference. SSIM is
designed to improve on traditional methods like peak signal-
to-noise ratio and mean-squared error, which have proved to
be inconsistent with human eye perception. SSIM is a new
paradigm for quality assessment, based on the hypothesis
that the HVS is highly adapted for extracting structural infor-
mation. The measure of structural similarity compares local
patterns of pixel intensities that have been normalized for
luminance and contrast. In practice, a single overall index
is sufficient enough to evaluate the overall image quality;
hence, a mean SSIM (MSSIM) index is used as the quality
measurement metric.
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SSI M(x, y) = (2μxμy + C1)(2σxy + C1)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C1)
(20)

M SSI M(x, y) = 1

M

M∑

m=1

SSI M(xm, ym) (21)

6 Results and discussion

The proposed algorithm using median-based lifting filter
generates results that are superior to the existing methods for
noise removal. The algorithm has been seen to yield better
PSNR than given in [1,2] and [4–10]. First, we compare our
results with Algorithm II of Salt-and-Pepper Noise Removal
by Median-Type Noise Detectors and Detail-Preserving Reg-
ularization, which is defined as Edge Preservation Filter
[EPF] of [1]. The comparative evaluation of our proposed
method with [1] has been done in Table 1. Our proposed
algorithm gives excellent PSNR values greater than 43 dB
for noise ratios less than or equal to 10%. For noise ratios
between 10% and 20%, the PSNR varies between 43.0821
and 39.0591 dB. Even for a noise ratio of 50%, we get a
PSNR of 33.2258 dB with 2 iterations of the algorithm. All
the results generated for noise ratios less than 50% have been
generated by a single iteration of the algorithm. For noise
ratios of 80% and 95%, we get PSNR values of 24.4037 and
23.8363 dB respectively. It took 3 iterations of the algorithm
to get the results in the case of 80% noise and 4 iterations of
the algorithm in the case of 95% noise. For implementing our
algorithm, we have used MATLAB 7 on a 1.73- GHz Pen-

Table 1 Comparative evaluation of proposed method

Test image Algorithm used Noise density (%) PSNR (in dB)

Lena 512 × 512 Proposed method 10 43.0821

20 39.0591

50 33.2258

70 25.2000

EPF [1] 10 35.0000

20 32.5000

50 27.5000

70 24.6000

Table 2 Time complexity—comparison of CPU time (in seconds)

Test image Noise density Adaptive Edge PF Proposed
(%) MF [1]

Lena 512 × 512 70 23 6865 53

90 311 >12000 91

Bridge 512 × 512 70 56 8003 54

90 311 >12000 92

Table 3 MSSIM value of pro-
posed algorithm for 512 × 512
Lena image

Noise density (%) MSSIM

10 0.9691

20 0.9528

50 0.9284

70 0.7339

Fig. 4 De-noising results of various filters for Lena image, a Image
with 70% Salt and Pepper Noise (6.7 dB). b MED filter (23.2 dB). c PSM
filter (19.5 dB). d MSM filter (19.0 dB). e DDBSM filter (17.5 dB).
f NASM Filter (21.8 dB). g ISM filter (23.4 dB). h Adaptive MED
(25.8 dB). i Edge preservation filter [1] (24.6 dB). j Proposed algorithm
(25.2 dB) (MSSIM = 0.7339)

tium M Processor with 256 MB of RAM. The algorithm has
been found to be pretty fast. For restoring 512 × 512 Lena
image corrupted with 95% noise, we needed 4 iterations of
our algorithm and the execution took 96 s. The execution time
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Fig. 5 De-noising results of various filters for bridge image, a Image
with 70% salt and pepper noise (6.8 dB). b MED filter (19.8 dB). c PSM
filter (17.0 dB). d MSM filter (16.4 dB). e DDBSM filter (15.9 dB).
f NASM filter (19.9 dB). g ISM filter (20.1 dB). h Adaptive MED
(21.8 dB). i Edge preservation filter [1] (21.1 dB). j Proposed algorithm
(23.4 dB) (MSSIM = 0.7112)

of our algorithm together with PSNR for different levels of
noise has been shown in Table 2. The MSSIM of the proposed
algorithm is shown in Table 3. Hence, the algorithm can be
seen to be efficient both in terms of its dexterity to restore a
corrupted image exceedingly well and to be less computation
intensive.

Further, the performance of the proposed algorithm is
tested for various levels of noise corruption and compared
with standard filters, namely standard median (MED) fil-
ter, and also recently proposed filters like the progressive
switching median (PSM) filter, the multistate median (MSM)
filter, the noise adaptive soft-switching median (NASM)
filter, the directional difference-based switching median
(DDBSM) filter, and the improved switching median (ISM)

Fig. 6 Lena reconstruction results of [2] a Original Lena image.
b Lena with 50% noise. c Reconstructed Lena PSNR = 31.8077 dB

Fig. 7 Lena reconstruction results with PSNR stabilization compared
with [2] a Proposed scheme 50% noise—run1 (PSNR = 31.5786 dB.
b Proposed scheme—run2 (PSNR = 32.9453 dB). c Proposed scheme–
run3 (PSNR = 33.2258 dB)

filter. The results for 512 × 512 Lena image and 512 × 512
Bridge image for 70% salt and pepper noise are shown in
Figs. 4 and 5, respectively. From these figures, it is clear
that our proposed filter gives better image quality (PSNR)
than the above filters (Figs. 6, 7). The variation of PSNR
with noise level of salt and pepper noise for Lena image and
Bridge image is depicted in Figs. 8 and 9, respectively. From
these figures, it can be concluded that our proposed filter is
superior than the other filters.
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Fig. 8 PSNR versus noise level for Lena image
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Fig. 9 PSNR versus noise level for Boat image

7 Conclusion

In this paper, a novel adaptive median-based lifting filter has
been proposed for de-noising the salt and pepper noise. The
lifting scheme of the second-generation wavelets with the
adaptive median-based lifting filter is used. The computed
results of the proposed filter is compared with various exist-
ing filters. The comparison of these results shows the supe-
riority of the proposed filter in terms of image quality as
well as the time complexity. The proposed filter is able to

remove salt and pepper noise with higher levels of noise
density.
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