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One of the biggest challenges is towards ensuring large-scale integration of photovoltaic systems into buildings. This work is aimed
at presenting a building integrated photovoltaic system power prediction concerning the building’s various orientations based on
the machine learning data science tools. The proposed prediction methodology comprises a data quality stage, machine learning
algorithm, weather clustering assessment, and an accuracy assessment. The results showed that the application of linear
regression coefficients to the forecast outputs of the developed photovoltaic power generation neural network improved the PV
power generation’s forecast output. The final model resulted from accurate forecasts, exhibiting a root mean square error of
4.42% in NN, 16.86% in QSVM, and 8.76% in TREE. The results are presented with the building facade and roof application
such as flat roof, south façade, east façade, and west façade.

1. Introduction

Economic growth has given rise to increasing global demand
for electrical energy production and consumption. Solar
power plants are very common in renewable energy sources
[1–4]. Satellite technology allows us to fly around the world.
In addition to being easily installed on the roof of the building,
PVmodules will act as stand-alone solar power generators [5–

7]. The installation of photovoltaic panels has increased every
year in recent years. Globally, 117 gigawatts of solar PV energy
are generated in 2019 [8]. Traditional grid-based power distri-
bution also operates on stable power supply lines and a consis-
tent load [9]. Grid efficiency can be enhanced by controlling
both suppliers and customers. Solar PV power could interfere
with conventional power generation, making conventional
generation uncomfortable or even unworkable [10–14].
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Machine learning has become more common in forecast-
ing and classification because it reliably processes complex or
nonlinear problems. They can distinguish the relationship
between input and output variables, even when the represen-
tation is unlikely [15]. The most common are artificial neural
network (ANN) [16], fuzzy logic (FL) [17], support vector
machine (SVM) [18], K-nearest neighbor algorithm (kNN)
[19], and decision tree- (DT-) [20] based techniques (includ-
ing random forest (RF) [21]. Specifically, artificial intelli-
gence approaches are discussed in detail to improve
photovoltaic performance forecasting models [22]. IRT is
the most commonly accepted technique for categorising light
poles [23], centred on image processing techniques to distin-
guish between healthy and defective panels of all image
processing-based approaches. Various patterns, challenges,
and opportunities for the implementation of ANN light poles
are highlighted [24]. Random forests were the most reliable
among the various forecasting techniques used by the site
and regional forecasters [25]. Several mathematical models
were developed to increase the accuracy of diagnoses [26].
Also, the use of PHANN for clear days of the sky resulted
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Figure 1: Flow chart of the short-term power prediction of the building integrated.
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in a standard deviation of 5.3%. In [27], the authors used the
recurrent neural network (LSTM-RNN) to predict future PV
generation, with RMSE results of approximately 82.15W to
136.87W, respectively, for two separate datasets. Most PV
forecasts now have a relative RMSE of more than 10% [28].

The input weights and the hidden layer biases of ELM are
allocated. Randomised and then measure the least square
instead of iteration approaches. The ELM will help to gain
information and better transition between situations. Capabil-
ity of many ELM-based models has been presented, and their
excellent capacity has been verified in predicting PV power
production [29]. The results are using ensemble method com-
bining lower upper bound estimation (LUBE) and ensemble
learning methods. Considering the degree of convergence
and prediction precision [30], it is worked to combine ELM
with the entropy method to build a hybrid forecast method
for short-term PV power production, which is preferable to
the radial basis function neural network and the generalised
Deep Learning Network [31]. The alternative multimodel is
based on ELM for PV power predictive. Forecasting is essen-
tial for operating power plants and other utilities [32]. The
feasibility-prospective forecasting model is also developed
and proved effective in predicting the short-term power pro-
duction of PV systems. Certain parameters are allocated at
random in traditional artificial neural networks (ANN), caus-
ing a certain degree of error and uncertainty in the prediction
performance. Several artificial neural networks (ANNs) have
been integrated with Generalised Annihilation (GA) to solve
this problem. It is stated that a convolutional neural network
system was effective in predicting solar irradiance, where the
GA was applied to optimise the associated hyperparameters.
However, in conventional ANNs, many parameters must be
carefully optimised to establish learning strategies [33].

The algorithms are developed to predict PV power gener-
ation [34]. Time series have been decomposed into high- and

low-frequency components. The DBN model will then be
used to provide high-frequency trends. Finally, the forecasted
trend components are summarised in the final results. GA is
the algorithm most commonly used to solve nonlinear opti-
misation problems. Genetic Algorithm (GA) Theory of Evo-
lution and Calculation of Individual Fitness Functions is
predicted for evolutionary theory. The GA involves the itera-
tive selection of elite individuals, crossover applications, and
mutations [35]. support vector machine (SVM) to predict
short-term solar PV power and optimise SVM parameters
using the Meta-SVM Optimizer [36].

Since SVM uses Quadratic Programming, SVM training
takes a long time when the number of items is large. Energy
resource forecasting based on neural networks is very good
at predicting solar power due to its strong task scheduling
(-threshold) and outstanding mapping capability. The com-
bined method for predicting PV power consumption with
ANN and analogue integration is investigated [37]. ELM is
developed and built using a neural feed-forward network
(FNN). ELM can train without altering its weights and
thresholds. It is characterised by rapid training speed and
strong generalisation capability and strong applications
[38]. The ELM model can effectively address complex non-
linear regression problems. This model has already been used
to predict the radiance and power output of PV systems. The
specific objective of explaining PV power fluctuations using a
graphical method based on the ELM model has been
reported [39]. A similarity-based photovoltaic module power
prediction model is developed using the available historical
data [40]. ANNmodel is used to predict monthly global solar
radiation concerning the power predication based on the
geographical location [41]. The performance of the photovol-
taic module varies concerning the geographical location. The
PV system’s prediction is based on the machine learning
algorithm developed, and the stability of the model is

Table 1: Parameters of the ANN.

Parameter Specification

Network Feed forward backpropagation

Input features Solar_Radiation, Wind_Speed, Relative_Humidity, temperature

Output response PV power

No. of. hidden layer 3

Hidden layers 1 and 2 Each ten units

Hidden layer 3 One unit

Optimisation Bayesian optimisation

Epochs 500

QSVM: quadratic support vector machine.
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Figure 3: The input and hidden layer fo the ANN.
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validated [42]. The algorithm is developed to predict the
grid’s load dispatch connected photovoltaic system for the
microgrid [43].

The PV output power is determined using various algo-
rithms to predict accuracy. A short-term, day-ahead power
prediction is analysed and a long-term, day-ahead power
prediction concerning climate condition. A study on the
building-integrated PV system is required to be undertaken.
In this study, the PV output is normalised based on experi-
mental studies. The machine learning algorithm is used to
predict the efficiency of the building integrated photovoltaic
system concerning the various orientations. The systems
being installed are flat, south and east oriented, and west ori-
ented façades. The artificial neural network, decision tree,
and quadratic support vector machine algorithm predict
the BIPV system’s performance short-term power prediction.

2. Machine Learning Algorithms

State-of-the-art solar power technology will only be estab-
lished if forecasters can predict how much solar power will
be available at a specific location at a given time. The built
model can be replicated since it includes only environmental
data without regard to geographical locations. The machine
learning models are developed with three types of training,
validation, and test set depending on the design’s nature.
The work flow chart is shown in Figure 1.

2.1. Artificial Neural Network. Artificial neural networks
(ANNs) can describe nonlinear, complex, and incremental
behaviours through input-output training patterns. An
ANN characterisation is based on an architecture that shows
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Figure 4: Algorithm of the (a) quadratic support vector machine and (b) decision tree.
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the connections between nodes, the determination of weights
methods, and the activation function.

Artificial neural networks’ ability to learn from large
samples makes it neural networks possible to solve several
major and complex problems [44]. The most common neu-
ral structure of the network is the feed-forward structure. A
typical neural network is made up of different computa-
tional components called neurons. The input and output
layer’s weights and biases are mutually optimised until the
output neuron values are within possibility of weeding out
false reasoning errors. This approach was successfully
applied in response to regression problems [45]. This
feed-forward network model is presented in Figures 2 and
3. Each layer has a hidden layer and many nodes in the
hidden layer, while the user-defined function types are
shown in Table 1. ANN methods can handle nonlinear sys-
tems. Still, problems of overfitting, local minima, random
initial data, intensive training data requirements, and
increased complexity due to multilayered architectures are
the limitations [46, 47].

The support vector machine (SVM) has become popular
in several areas because it uses soft computing. The funda-
mental concept in SVM is to apply optimisation in certain
areas through nonlinear optimisation. For classification data,
support vector regression (SVR) has been developed. The
kernel functions are a prominent feature of the SVM, making
the data part of the higher-dimensional space product of a
lower-dimensional input space project on higher-
dimensional outputs. Several nonlinear kernel functions can
be used in regression applications. As a kernel function, the
radial base function is very efficient (RBF). Help vector
machine is used for classification and regression problems.
Help vector machine can be used for linear and nonlinear
regression. SVM is aimed at fitting as many patterns between
planes as possible. The SVM is based on several different
methods. Quadratic Kernel Trick has been implemented in

this model due to its low interpretability and medium model
versatility. QSVM is more sensitive, that is a major limitation
of the proposed model [46]. The quadratic SVM algorithm is
shown in Figure 4(a).

2.2. Decision Tree. The decision tree shall create models of
regression or classification, which shall be detailed in the
tree’s hierarchy. First, the data is broken down into sub-
groups of small numbers, while at the same time, an artificial
submatrix is created, which in its turn allows new subsets.
The result is an elaborate tree crown with decision nodes
and leaf nodes. The decision tree can be suffered from an
overfitting problem and memory constraints. Calculations
are more difficult when the tree structure is more depth
[46]. The decision tree algorithm is shown in Figure 4(b).
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Figure 5: Hourly variation of the incident solar radiation for the various orientations and ambient temperature.
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3. Energy Performance Metrics

To evaluate the results of our NN-QSVM-TREE models, we
need to compare the expected capacity values with the exper-
iment’s actual results. The performance of the agencies is,
therefore, assessed by these three different metrics [48].

3.1. RMSE (Root Mean Square Error). The root means the
square error is simply the square root of the square mean of
all the errors. RMSE is a good measure of accuracy but only
applicable to comparing model predictions with data and
not between variables.
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� �
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3.2. R2 Square. This is a statistical indicator that describes the
amount of uncertainty explained by an independent variable.
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3.3. MAPE (Mean Absolute Percentage Error. Themean abso-
lute percentage error (MAPE) is a measure of the forecasting
method’s accuracy in statistics.
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M is the total number of predictions, actual test values,
and the NN-QSVM-TREE model’s predicted values.

4. Result and Discussion

The efficiency of this method is modelled and evaluated using
machine learning algorithms. Machine learning algorithms
considered are decision tree, artificial neural network, and
quadratic SVM. Details of the three algorithms can be found
in the section. The experimental data provided in [49–51]
shall be used for this purpose. The power output of the PV
panels varies due to the changing environmental conditions
of the location. The statistics are given every five minutes.
The input parameters for the study considered are the inci-
dent solar radiation and the ambient temperature shown in
Figure 5.
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The correlation plot is shown in Figure 6. PV prediction
based on NN-QSVM-Tree Model is likely to happen. Predic-
tion models are graded based on the mean absolute percent-
age error (MAPE) and the root mean square error (RMSE).
The R2 is widely used in statistics. This model is unstable
when the ROI coefficient is zero. When R2 = 1, firstly, this
model is developed by using data available from the experi-
mental data carried out in [49–51] to the public. Figure 5 pre-
sents the prediction curves of solar radiation. Figure 6 shows
stage 1 of our statistical learning algorithm correlation plot of

the selected feature of the PV power prediction. The other
two models’ errors in the processing stage of prediction are
controlled at the specified values [-8%, 8%]; the NN-
QSVM-Tree models’ errors vary greatly, and the SVM
model’s error is almost 25%. The errors of the NN-QSVM-
Tree model appear to land within a ±3 range. NN-QSVM
has a relative error of -3% and 3% for 50% samples.
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Table 2: Performance of the machine learning algorithms.

Algorithm Application MSE RMSE R2 MAE MAPE

NN

Flat roof 35.371 5.94 0.8632 4.95 2.22

South façade 49.42 7.03 0.8706 5.94 1.48

East façade 19.54 4.42 0.8833 3.00 0.55

West façade 114.12 10.68 0.8807 5.13 1.76

Q_SVM

Flat roof 347.72 18.64 0.863 15.89 7.89

South façade 256.88 16.8 0.8713 15.34 5.03

East façade 345.76 18.59 0.8843 11.33 1.72

West façade 295.72 17.19 0.8809 8.84 2.92

Tree

Flat roof 96.77 9.83 0.8634 8.505 3.17

South façade 76.903 8.76 0.8699 7.00 2.66

East façade 267.04 16.34 0.8823 11.82 2.13

West façade 185.37 13.61 0.8787 7.56 2.33
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The prediction results of the NN-QSVM-Tree models
for a flat roof is shown in Figure 7. The prediction curves
of the sunlight power output of the NN-QSVM-Tree
models for the first sunny daytime are presented in
Figure 7. Every model will essentially show similar patterns
of the PV power curve. Also, the error estimate of the tree
model estimated in the early stage of observation is 30%.
The prediction errors of the NN-QSVM-Tree model fall
mostly within a ±2 range. The NN-QSVM-Tree model’s
relative error values of [-1%, 1%] account for 97.18% and
93% of the total test samples. The NN-QSVM-Tree model
is evaluated using the data from typical summer days.
The power output is considered as the training data of
the model, considered as the test data. The test results of
the New Rating scale are shown in Figure 8. This research
shows that the NN-QSVM-Tree models display significant
prediction errors at the beginning of the prediction process.
The fitting effect of tree and SVM models in the late stage
of prediction is lower. By analysing the network, it is found
that the procedure would still be a lot better than antici-
pated prediction errors in Figure 9. The root mean square
errors (RMSE) of the NN-QSVM-Tree model in the [-2%,
2%] ranges are calculated at 39.44%, 17.43%, and 10.09%
of the total evaluation samples. This problem happens
because cloudy weather is causing low power production.
The predicted predictions are shown in Figure 10. The
PV production curve fluctuates greatly during west-
orientated facades. All three power models roughly mirror
the fluctuation pattern of the output power curve. One sig-
nificant explanation for the high prediction errors is the
uncertainty about power production in east-oriented
facade. On an east- or west-orientated façade, the predicted
model error would be more profound. In Figures 9 and 10,
during the initial stage of prediction, the three models’ pre-
diction stability is lower while higher in the middle and late
stages of prediction. According to the results shown, there
are significant differences between the three models’ accu-
racy in Figure 10. Relative error values of NN-QSVM-
TREE models in the [-3%, 3%] range account for 17.78%,
11.87%, and 13.88% of the total test samples. Therefore,

the prediction errors of the three models also increased
despite the research. Evaluation results are shown in
Table 2.

Table 2 showcased various outcomes of several models
for different orientations of the façade and horizontal surface
conditions. The RMSE values and the MAPE values of the
NN-QSVM-TREE model are always the smallest under dif-
ferent conditions. For three different weather conditions,
the NN-QSVM-TREE models’ average RMSE values are
6.51%, 5.54%, 10.83%, 13.10%, and 14.35%. The NN-
QSVM-TREE model is the smallest in the mean squared
error setting, which means the model’s predictive stability is
optimum. Also, because the PV power output curve has var-
iability and randomness in façade and roof installations, the
model’s output has a greater prediction error. The average
MAPE values are 3.67%, 7.70%, and 8.45%. It can be noticed
that the MAPE value of the NN-QSVM-TREE model is
lower. The MAPE is shown in Figure 11, supporting the
hypothesis that an NN-QSVM-TREE model is useful under
different orientation of the building installation conditions.
For this assessment index, the R2 in sunny weather is sub-
stantially higher than in façade installations. Under three sit-
uations, the average R2 of NN-QSVM-TREE models are
88.3%, 88.43%, and 88.230%. NN-QSVM-TREE model has
a strong superior fitting effect. The RMSE value of the earlier
developed model is compared and listed in Table 3.

5. Conclusion

State-of-the-art solar power technology will only be estab-
lished if forecasters can reliably predict how much solar
power will be available at a specific place at a particular time
(forecasted global horizontal irradiance and ambient temper-
ature and the calculated elevation and azimuth angle of the
sun). The built model is replicable since it includes only envi-
ronmental data without regard to geographic locations.
According to the nature of creation, the machine learning
models are developed with three training, validation, and test
sets. The results show that the model operates consistently
for a specific time and place. When it comes to neural

Table 3: Comparison of the RMSE of earlier studies.

Algorithm Variables RMSE Reference

Similarity-based forecasting
models (SBFMs)

Temperature, humidity, dew point, wind speed, irradiance, and sky cover data 27.4 [40]

ANN Sky image and solar irradiance 59.8 [52]

Based on cluster analysis and
ensemble regression.

Global irradiance, ambient temperature 8.88 [53]

ANN
Sunshine, temperature, cloudiness, precipitation, relative humidity, dew point,

temperature, soil temperature, evaporation, and pressure
33 [41]

ANN
Global irradiance, ambient temperature, relative humidity, wind direction and speed,

solar azimuth, and elevation angles
8.54 [42]

SVM Global horizontal radiation and diffuse horizontal radiation 6.19 [43]

ANN

Solar_Radiation, Wind_Speed, Relative_Humidity, temperature PV power

4.42
Present
study

QSVM 16.8

TREE 8.76
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network forecasting, the application of linear regression coef-
ficients will boost forecasters’ accuracy. The final model
resulted from accurate forecasts, exhibiting a root mean
square error of 4.42% in NN, 16.86% in QSVM, and 8.76%
in TREE. These aspects of the prediction process show the
model is position and configuration independent. Finally, a
supportive solar power system is disconnected at night with
a stable power supply. A more computerised management
of power grids is expected to increase power grid manage-
ment processes’ performance and reliability. The new regula-
tions would also help increase the involvement of renewable
energy producers and aggregators in the electricity market.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

References

[1] N. M. Kumar, M. Samykano, and A. Karthick, “Energy loss
analysis of a large scale BIPV system for university buildings
in tropical weather conditions: A partial and cumulative per-
formance ratio approach,” Case Studies in Thermal Engineer-
ing, vol. 25, article 100916, 2021.

[2] V. S. Chandrika, A. Karthick, N. M. Kumar, P. M. Kumar,
B. Stalin, and M. Ravichandran, “Experimental analysis of
solar concrete collector for residential buildings,” Interna-
tional Journal of Green Energy, vol. 18, no. 6, pp. 615–623,
2021.

[3] C. S. Dhanalakshmi, P. Madhu, A. Karthick, and R. V. Kumar,
“Combination of woody and grass type biomass : waste man-
agement, influence of process parameters, yield of bio-oil by
pyrolysis and its chromatographic characterization,” Journal
of Scientific and Industrial Research, vol. 80, pp. 172–180, 2021.

[4] A. Karthick, K. Kalidasa Murugavel, K. Sudalaiyandi, and
A. Muthu Manokar, “Building integrated photovoltaic mod-
ules and the integration of phase change materials for equato-
rial applications,” Building Services Engineering Research and
Technology, vol. 41, no. 5, pp. 634–652, 2020.

[5] S. Senthilkumar, A. Karthick, R. Madavan et al., “Optimization
of transformer oil blended with natural ester oils using Tagu-
chi- based grey relational analysis,” Fuel, vol. 288, article
119629, 2021.

[6] V. S. Chandrika, M. M. Thalib, A. Karthick et al., “Perfor-
mance Assessment of Free Standing and Building Integrated
Grid Connected Photovoltaic System for Southern Part of
India,” vol. 42, Tech. Rep. 2, Building Services Engineering
Research and Technology, 2020.

[7] V. K. Ramalingam, A. Karthick, M. P. V. Jeyalekshmi, A. M.
M. A. J. Decruz, A. M. Manokar, and R. Sathyamurthy,
“Enhancing the fresh water produced from inclined cover
stepped absorber solar still using wick and energy storage
materials,” Environmental Science and Pollution Research,
vol. 28, no. 14, pp. 18146–18162, 2021.

[8] M. U. Ali, H. F. Khan, M. Masud, K. D. Kallu, and A. Zafar, “A
machine learning framework to identify the hotspot in photo-
voltaic module using infrared thermography,” Solar Energy,
vol. 208, pp. 643–651, 2020.

[9] C. Li, S. Lin, F. Xu, D. Liu, and J. Liu, “Short-term wind power
prediction based on data mining technology and improved sup-
port vector machine method: a case study in Northwest China,”
Journal of Cleaner Production, vol. 205, pp. 909–922, 2018.

[10] A. Karthick, M. Manokar Athikesavan, M. K. Pasupathi,
N. Manoj Kumar, S. S. Chopra, and A. Ghosh, “Investigation
of inorganic phase change material for a semi-transparent
photovoltaic (STPV) module,” Energies, vol. 13, no. 14,
p. 3582, 2020.

[11] P. Manoj Kumar, K. Mylsamy, K. Alagar, and K. Sudhakar,
“Investigations on an evacuated tube solar water heater using
hybrid-nano based organic phase changematerial,” International
Journal of Green Energy, vol. 17, no. 13, pp. 872–883, 2020.

[12] V. Chandran, C. K. Patil, A. Karthick, D. Ganeshaperumal,
R. Rahim, and A. Ghosh, “State of charge estimation of lithium-
ion battery for electric vehicles usingmachine learning algorithms,”
World Electric Vehicle Journal, vol. 12, no. 1, p. 38, 2021.

[13] A. Karthick, K. Kalidasa Murugavel, A. Ghosh, K. Sudhakar,
and P. Ramanan, “Investigation of a binary eutectic mixture
of phase change material for building integrated photovoltaic
(BIPV) system,” Solar Energy Materials and Solar Cells,
vol. 207, article 110360, 2020.

[14] A. Karthick, P. Ramanan, A. Ghosh, B. Stalin, R. Vignesh
Kumar, and I. Baranilingesan, “Performance enhancement of
copper indium diselenide photovoltaic module using inor-
ganic phase change material,” Asia-Pacific Journal of Chemical
Engineering, vol. 15, no. 5, 2020.

[15] C. Voyant, G. Notton, S. Kalogirou et al., “Machine learning
methods for solar radiation forecasting: a review,” Renewable
Energy, vol. 105, pp. 569–582, 2017.

[16] A. Youssef, M. El-telbany, and A. Zekry, “The role of artificial
intelligence in photo-voltaic systems design and control: A
review,” Renewable and Sustainable Energy Reviews, vol. 78,
pp. 72–79, 2017.

[17] Z. Yi and A. H. Etemadi, “Fault detection for photovoltaic sys-
tems based on multi-resolution signal decomposition and
fuzzy inference systems,” IEEE Transactions on Smart Grid,
vol. 8, no. 3, pp. 1274–1283, 2017.

[18] F. Harrou, A. Dairi, B. Taghezouit, and Y. Sun, “An unsuper-
vised monitoring procedure for detecting anomalies in photo-
voltaic systems using a one-class support vector machine,”
Solar Energy, vol. 179, pp. 48–58, 2019.

[19] S. R. Madeti and S. N. Singh, “Modeling of PV system based on
experimental data for fault detection using kNN method,”
Solar Energy, vol. 173, pp. 139–151, 2018.

[20] R. Benkercha and S. Moulahoum, “Fault detection and diagno-
sis based on C4.5 decision tree algorithm for grid connected
PV system,” Solar Energy, vol. 173, pp. 610–634, 2018.

[21] M. Heinrich, S. Meunier, A. Samé et al., “Detection of cleaning
interventions on photovoltaic modules with machine learn-
ing,” Applied Energy, vol. 263, article 114642, 2020.

[22] R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review
and evaluation of the state-of-the-art in PV solar power fore-
casting: techniques and optimization,” Renewable and Sustain-
able Energy Reviews, vol. 124, p. 109792, 2020.

[23] P. Reddy, M. V. N. S. Gupta, S. Nundy, A. Karthick, and
A. Ghosh, “Status of BIPV and BAPV system for less energy-

10 International Journal of Photoenergy



hungry building in India-a review,” Applied Sciences, vol. 10,
no. 7, p. 2337, 2020.

[24] B. Li, C. Delpha, D. Diallo, and A. Migan-Dubois, “Application
of Artificial Neural Networks to photovoltaic fault detection
and diagnosis: a review,” Renewable and Sustainable Energy
Reviews, vol. 138, p. 110512, 2021.

[25] M. Zamo, O. Mestre, P. Arbogast, and O. Pannekoucke, “A
benchmark of statistical regression methods for short-term
forecasting of photovoltaic electricity production. Part II:
probabilistic forecast of daily production,” Solar Energy,
vol. 105, pp. 804–816, 2014.

[26] A. Dolara, F. Grimaccia, S. Leva, M. Mussetta, and E. Ogliari,
“A physical hybrid artificial neural network for short term
forecasting of PV plant power output,” Energies, vol. 8, no. 2,
pp. 1138–1153, 2015.

[27] A. Nespoli, E. Ogliari, S. Leva et al., “Day-ahead photovoltaic
forecasting: a comparison of the most effective techniques,”
Energies, vol. 12, no. 9, p. 1621, 2019.

[28] M. Abdel-Nasser and K. Mahmoud, “Accurate photovoltaic
power forecasting models using deep LSTM-RNN,” Neural
Computing and Applications, vol. 31, no. 7, pp. 2727–2740, 2019.

[29] Q. Ni, S. Zhuang, H. Sheng, G. Kang, and J. Xiao, “An ensem-
ble prediction intervals approach for short-term PV power
forecasting,” Solar Energy, vol. 155, pp. 1072–1083, 2017.

[30] P. Tang, D. Chen, and Y. Hou, “Entropy method combined
with extreme learning machine method for the short- term
photovoltaic power generation forecasting,” Chaos, Solitons
& Fractals, vol. 89, pp. 243–248, 2016.

[31] Y. Han, N. Wang, M. Ma, H. Zhou, S. Dai, and H. Zhu, “A PV
power interval forecasting based on seasonal model and non-
parametric estimation algorithm,” Solar Energy, vol. 184,
pp. 515–526, 2019.

[32] M. K. Behera and N. Nayak, “A comparative study on short-
term PV power forecasting using decomposition based opti-
mized extreme learning machine algorithm,” Engineering Sci-
ence and Technology, an International Journal, vol. 23, no. 1,
pp. 156–167, 2020.

[33] N. Dong, J. F. Chang, A. G. Wu, and Z. K. Gao, “A novel con-
volutional neural network framework based solar irradiance
prediction method,” International Journal of Electrical Power
& Energy Systems, vol. 114, article 105411, 2020.

[34] T. Xie, G. Zhang, H. Liu, F. Liu, and P. Du, “A hybrid forecast-
ing method for solar output power based on variational mode
decomposition, deep belief networks and auto-regressive mov-
ing average,” Applied Sciences, vol. 8, no. 10, p. 1901, 2018.

[35] O. H. Mohammed, Y. Amirat, and M. Benbouzid, “Economi-
cal evaluation and optimal energy management of a stand-
alone hybrid energy system handling in genetic algorithm
strategies,” Electronics, vol. 7, no. 10, p. 233, 2018.

[36] W. VanDeventer, E. Jamei, G. S. Thirunavukkarasu et al.,
“Short-term PV power forecasting using hybrid GASVM tech-
nique,” Renewable Energy, vol. 140, pp. 367–379, 2019.

[37] G. Cervone, L. Clemente-Harding, S. Alessandrini, and
L. Delle Monache, “Short-term photovoltaic power forecasting
using Artificial Neural Networks and an Analog Ensemble,”
Renewable Energy, vol. 108, pp. 274–286, 2017.

[38] A. Güner, Ö. F. Alçin, and A. Şengür, “Automatic digital mod-
ulation classification using extreme learning machine with
local binary pattern histogram features,” Measurement,
vol. 145, pp. 214–225, 2019.

[39] S. Han, Y.-h. Qiao, J. Yan, Y.-q. Liu, L. Li, and Z. Wang, “Mid-
to-long term wind and photovoltaic power generation predic-
tion based on copula function and long short term memory
network,” Applied Energy, vol. 239, pp. 181–191, 2019.

[40] H. Sangrody, N. Zhou, and Z. Zhang, “Similarity-based models
for day-ahead solar PV generation forecasting,” IEEE Access,
vol. 8, pp. 104469–104478, 2020.

[41] C. G. Ozoegwu, “Artificial neural network forecast of monthly
mean daily global solar radiation of selected locations based on
time series and month number,” Journal of Cleaner Produc-
tion, vol. 216, pp. 1–13, 2019.

[42] S. Theocharides, G. Makrides, A. Livera, M. Theristis,
P. Kaimakis, and G. E. Georghiou, “Day-ahead photovoltaic
power production forecasting methodology based on machine
learning and statistical post-processing,” Applied Energy,
vol. 268, article 115023, 2020.

[43] L.Wen, K. Zhou, S. Yang, and X. Lu, “Optimal load dispatch of
community microgrid with deep learning based solar power
and load forecasting,” Energy, vol. 171, pp. 1053–1065, 2019.

[44] J. Chang, G. Wang, and T. Mao, “Simulation and prediction of
suprapermafrost groundwater level variation in response to
climate change using a neural network model,” Journal of
Hydrology, vol. 529, pp. 1211–1220, 2015.

[45] B. Kordanuli, L. Barjaktarović, L. Jeremić, and M. Alizamir,
“Appraisal of artificial neural network for forecasting of eco-
nomic parameters,” Physica A: Statistical Mechanics and its
Applications, vol. 465, pp. 515–519, 2017.

[46] M. N. Akhter, S. Mekhilef, H. Mokhlis, and N.Mohamed Shah,
“Review on forecasting of photovoltaic power generation based
on machine learning and metaheuristic techniques,” IET Renew-
able Power Generation, vol. 13, no. 7, pp. 1009–1023, 2019.

[47] M. N. Akhter, S. Mekhilef, H. Mokhlis, L. Olatomiwa, and
M. A. Muhammad, “Performance assessment of three grid-
connected photovoltaic systems with combined capacity of
6.575 kWp in Malaysia,” Journal of Cleaner Production,
vol. 277, p. 123242, 2020.

[48] Y. Li, C. Zou, M. Berecibar et al., “Random forest regression for
online capacity estimation of lithium-ion batteries,” Applied
Energy, vol. 232, pp. 197–210, 2018.

[49] P. Ramanan, K. Kalidasa Murugavel, and A. Karthick, “Perfor-
mance analysis and energy metrics of grid-connected photo-
voltaic systems,” Energy for Sustainable Development, vol. 52,
pp. 104–115, 2019.

[50] P. Ramanan, K. Kalidasa Murugavel, A. Karthick, and
K. Sudhakar, “Performance evaluation of building-integrated
photovoltaic systems for residential buildings in southern
India,” Building Services Engineering Research and Technology,
vol. 41, no. 4, pp. 492–506, 2020.

[51] A. Karthick, K. Kalidasa Murugavel, L. Kalaivani, and
U. Saravana Babu, “Performance study of building integrated
photovoltaic modules,” Advances in Building Energy Research,
vol. 12, no. 2, pp. 178–194, 2018.

[52] Z. Zhen, J. Liu, Z. Zhang et al., “Deep learning based surface
irradiance mapping model for solar PV power forecasting
using sky image,” IEEE Transactions on Industry Applications,
vol. 56, no. 4, pp. 3385–3396, 2020.

[53] C. Pan and J. Tan, “Day-ahead hourly forecasting of solar gen-
eration based on cluster analysis and ensemble model,” IEEE
Access, vol. 7, pp. 112921–112930, 2019.

11International Journal of Photoenergy


	Short-Term Power Prediction of Building Integrated Photovoltaic (BIPV) System Based on Machine Learning Algorithms
	1. Introduction
	2. Machine Learning Algorithms
	2.1. Artificial Neural Network
	2.2. Decision Tree

	3. Energy Performance Metrics
	3.1. RMSE (Root Mean Square Error)
	3.2. R2 Square
	3.3. MAPE (Mean Absolute Percentage Error

	4. Result and Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest

