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Abstract
In the present study, the effect of elevated CO2 on growth, physiology, yield and proteome was studied on two maize (Zea 
mays L.) varieties grown under Free-air CO2 enrichment. Growth in high CO2 (530 ppm) did not affect either photosynthesis 
or pigment contents in both varieties. Reduced MDA content, antioxidant and antioxidative enzymes levels were observed in 
both varieties in response to high CO2. PEHM-5 accumulated more biomass than SMH-3031 under eCO2. PEHM-5 also had 
more seed starch and total soluble sugar than SMH-3031. However, SMH-3031 had increased number of seed per cob than 
PEHM-5. Interestingly, thousand seed weight was significantly increased in PEHM-5 only, while it was decreased in SMH-
3031 under eCO2. We observed increased seed size in PEHM-5, while the size of the SMH-3031 seeds remained unaltered. 
Leaf proteomics revealed more abundance of proteins related to Calvin cycle, protein synthesis assembly and degradation, 
defense and redox homeostasis in PEHM-5 that contributed to better growth and yield in elevated CO2. While in SMH-3031 
leaf, proteins related to Calvin cycle, defense and redox homeostasis were less abundant in elevated CO2 resulting in average 
growth and yield. The results showed a differential response of two maize varieties to eCO2.

Keywords  Elevated CO2 · FACE · Maize · Yield · Antioxidative enzymes · Protein abundance · Mass spectrometry

Introduction

Anthropogenic activities have caused accumulation of green-
house gases (GHGs) in the atmosphere, leading to the poten-
tial hazards of climate change. High carbon dioxide (CO2) 
and other GHGs tend to warm up the atmosphere, besides 
affecting other meteorological variables. The pre-industrial 
CO2 concentration was 278 parts per million (ppm) and it 
has reached up to 411.77 ppm in July 2019 (https​://www.
esrl.noaa.gov/gmd/ccgg/trend​s/) and there are further predic-
tions for atmospheric [CO2] reaching to 936 ppm (RCP8.5) 

by the year 2100 (IPCC 2013). The rise in atmospheric CO2 
together with warming will likely cause a significant impact 
on agricultural systems (Abebe et al. 2016; Mina et al. 2019; 
Qiao et al. 2019).

Plants with different photosynthesis type (C3, C4, and 
CAM) show variable response to elevated [CO2]. Elevated 
atmospheric CO2 normally promotes growth and yield of C3 
plants through fertilization effect and enhanced photosyn-
thesis. However, there are conflicting reports on the effect 
of elevated CO2 on maize crop ranging from no effect (Erbs 
et al. 2015) to a significantly positive effect on yield (Xie 
et al. 2018). In a meta-analysis study, Taub et al. (2008) 
reported that elevated CO2 tend to decline protein concen-
trations in several major crop plants viz; wheat, rice, barley, 
soybean and many more. For accurate prediction of future 
food supply and fully adapting crops to exploit the additional 
atmospheric resource, it is important to understand crop 
response to elevated [CO2] (Ainsworth et al. 2008; Leakey 
2009; Leakey et al. 2009; Leakey and Lau 2012; Ruiz-Vera 
et al. 2015). About 18% of global primary productivity is 
comprised of C4 plants and contribute up about 40% of the 
world grain harvest (Ehleringer et al. 1997). Therefore, it is 
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important to understand the responses of economically valu-
able C4 crop plants to future rises in atmospheric CO2. The 
Indo-Gangetic plains region of India is the most intensively 
farmed zone of the country (Erenstein et al. 2007).

In India, maize (Zea mays) is among the three largest 
food crops after rice and wheat. Apart from being a good 
food for human being and excellent feed for animals, maize 
is also the raw material for various industrial products that 
include food sweeteners, starch, oil, protein, alcoholic bever-
ages, pharmaceutical, cosmetic, textile, package and paper 
industries etc. (Parihar et al. 2011). An agricultural estimate 
suggests it was cultivated in 8.7 m ha (2010–2011) during 
Kharif season (July–October) in India. Maize contributes 
nearly 1400 million USD to the national agricultural gross 
domestic product of India besides generating employment 
of over 100 million man-days. (https​://agrig​oaexp​ert.res.in/
icar/categ​ory/agric​ultur​e/field​crops​/cere-als/maize​.php).

Current knowledge on growth stimulation through ele-
vated CO2 was obtained by growing crops in various con-
trolled environments such as leaf chambers (Valle et al. 
1985), sunlight-controlled environment facilities (Jones 
et al. 1985a, b, c), greenhouses (Kimball 1983), and open-
top chambers (Rogers et al. 1983, 1984a, b). But all these 
studies had many technical drawbacks mainly the chamber 
effect. Advancement of scientific understanding leads to 
the development of Free Air Carbon Dioxide Enrichment 
(Leakey 2009; Leakey et al. 2009). Free Air Carbon Diox-
ide Enrichment (FACE) experiments provide realistic future 
field conditions allowing the researchers to elucidate the 
mechanism of crop response closest to natural conditions.

There are very limited studies in India on the impact of 
elevated CO2 on maize. Abebe et al. (2016) reported a posi-
tive impact of elevated CO2 on maize in north-western India. 
Whereas Mina et al. (2019) reported better crop heath index 
of two maize varieties exposed to elevated CO2. However, 
both these studies were done in open-top chambers. Till 
date, there are no studies on maize under FACE in India. 
Moreover, there is little published information on maize 
response to elevated CO2 at the proteomic level. The objec-
tives of the current study were to evaluate the impact of 
elevated CO2 on growth, yield and proteome of two maize 
varieties grown under FACE condition.

Materials and methods

Carbon dioxide exposure

FACE facility is established at CSIR-National Botanical 
Research Institute, Lucknow (80,059′ E, 26,055′ N, 123 m 
above sea level), Uttar Pradesh, India (Pandey et al. 2017). 
FACE consists of six hexagonal rings having a diameter 
of 10 m, fitted with horizontal and vertical GI pipes with 

nozzles for the release of CO2. Compressors are used to 
pump CO2 into the rings and its flow was controlled via 
a solenoid valve. Out of six, three rings were used as con-
trol (ambient) and rest three were serves as CO2 enrichment 
(elevated) ring. Monitoring of CO2 concentration in the 
ring was achieved by an infra-red gas analyzer. Other sen-
sors for the monitoring of temperature (resistance tempera-
ture detectors), humidity (humidity sensor), light intensity 
(PAR sensor), Wind speed (anemometer) and Wind direc-
tion (potentiometer) were towered at the centre of each ring. 
Microprocessor-based supervisory control and data acquisi-
tion (SCADA) system were used to harmonize, control and 
data acquisition from the installed sensors.

Experimental material, plot preparation and crop 
cultivation

Two commonly grown Indian maize (Zea mays) varie-
ties: PEHM-5 and SMH-3010 were selected for the study. 
PEHM-5 (pusa early hybrid makka-5) an early maturing 
hybrid, is tolerant to waterlogging and with the life span 
of 80–90 days and average seed yield are 4.5–5.5 tonnes 
hectare−1. SMH-3031 (short mid drought hybrid) is a late 
variety with the life cycle of 90–100 days, suitable for all 
conditions and seasons, having average seed yield 6.0–6.5 
tonnes hectare−1. Out of six FACE rings three were used 
for ambient carbon dioxide (control) and remaining three 
for carbon dioxide enrichment (treatment). Each ring was 
divided into six subplots of 4.5 m−2 area. In randomized 
way seeds of each variety (spacing of 20 × 25 cm) were 
sown during mid-June. There were approximately 50–60 
plants ring−1 grown till final harvest. NPK (nitrogen: phos-
phorus: potassium) in the ratio of 100:60:40 kg per hectare 
was applied in the form of urea, diammonium phosphate 
(DAP), and muriate of potash, respectively. Phosphorus and 
Potassium were applied at the time of seedbed preparation 
while nitrogen fertilizer was applied in three splits doses. 
One-third of nitrogen was applied at the time of seedbed 
preparation. The second dose (1/3) of nitrogen was applied 
30 days after germination (DAG) while the final dose 60 
DAG. Irrigation and removal of weeds were done regularly 
throughout the experiment.

Meteorological condition and free air carbon 
dioxide enrichment data

During the experimental period, daily 24-h weather data 
(temperature and humidity) of Lucknow city was obtained 
from an online database (https​://www.wunde​rgrou​nd.com). 
The recorded average temperature varied between 35 and 
22  °C and humidity varied between 97 and 56% (Sup-
plementary Table S1). On-site field data were obtained 
from the SCADA system, comprising CO2 concentration, 

https://agrigoaexpert.res.in/icar/category/agriculture/fieldcrops/cere-als/maize.php
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temperature, humidity, PAR, wind speed and wind direction. 
Plants of elevated rings were regularly (8 h per day from 
9:00 AM to 5:00 PM) exposed to the elevated level of CO2 
(550 ppm). However, at the end of season average elevated 
CO2 concentration was 530 ppm (+ 130 ppm above ambi-
ent; ambient average 398 ppm) (Supplementary figure S1).

Plant photosynthesis, growth and yield

Rate of photosynthesis, stomatal conductance, respiration, 
maximal photochemical efficiency of PSII was measured 
from Li-COR model 6400 (Lincoln, Nebraska, USA). The 
youngest fully mature leaf from three randomly selected 
plants within each cultivar and ring was selected for 
measurement.

Plants were harvested for biomass at initial grain filling 
stage (70 days after germination; DAG) and final harvest 
(full maturity; 100 DAG) in five replicates from each ring 
(n = 15). Up-rooted plants were immediately washed in run-
ning water to remove the soil. Leaf samples (n = 5) were 
frozen in liquid N2 and kept at − 80 °C for biochemical and 
proteomic study. Grains were also stored at − 20 °C for 
biochemical and proteomic analysis after harvesting. Root, 
shoots and sprout were separated and oven-dried at 70 °C 
until a constant weight was achieved and biomass were 
taken from Sartorius (CP 124S) balance. To study the yield 
parameters root weight, shoot weight and sprout weight, the 
number of seed per cob, thousand seed weight and harvest 
index were considered.

Pigments, antioxidant enzymes and antioxidant 
estimation

Pigments, antioxidant and antioxidant enzymes were esti-
mated from leaf samples of initial grain filling stage (70 
DAG). Total chlorophyll, chlorophyll a and chlorophyll b 
content were measured using Arnon (1949) 80% acetone 
method. Lichtenthaler (1987) method was used for the esti-
mation of carotenoid. Lipid peroxidation in terms of malon-
dialdehyde (MDA) content was measured, using thiobarbi-
turic acid (Heath and Packer 1968). Photochemical NBT 
reduction method was used for Superoxide dismutase (SOD) 
activity assay (Beyer and Fridovich 1987). Catalase (CAT) 
activity was measured in terms of decrease in absorbance 
at 240 nm as H2O2 was consumed (Rao et al. 1996). Rate 
of hydrogen peroxide dependent oxidation of ascorbic acid 
(Chen and Asada 1989) was used to estimate Ascorbate 
peroxidase (APX). Glutathione reductase (GR) activity was 
measured by the reduction of 5,5′-dithiobis-(2-nitrobenzoic 
acid) (DTNB) via glutathione to form TNB (Smith et al. 
1988). Bradford (1976) method was used to estimate pro-
tein content using the Bradford reagent and bovine serum 
albumin (BSA, Sigma) as a standard. The activity of SOD, 

CAT, APX and GR were calculated based on protein con-
tent. Enzyme recycling assay given by Griffith (1980) was 
used to determine reduced glutathione (GSH) and oxidised 
glutathione (GSSG) content.

Starch, total soluble sugar of seed

Starch and total soluble sugar were estimated by colorimet-
ric method using soluble starch and glucose as standard. 
Perchloric acid was used for starch extraction (Whelan 1955) 
and estimated using iodine (Nguyen et al. 2002). Ethanolic 
extraction of total soluble sugar (Cross et al. 2006) was per-
formed and estimation was done by anthrone method (Yemm 
and Willis 1954).

Yield parameters

Yield parameters were studied at final harvesting and com-
prised of root weight, shoot weight, sprout weight per plant, 
number of sprouts per plant, number of seed per cob, thou-
sand seed weight and harvest index (Hay 1995).

To obtain the size of the seed, images were captured 
using a stereo fluorescence microscope (LEICA M205 
FCA) with an inbuilt camera (LEICA DFC7000 T) with-
out image enhancement and saved in TIFF (tagged image 
file format) files. Fifteen mature dry seeds were scanned 
and images were captured at a pixel density of 1920 × 1440. 
Using LEICA application suite version 4.2 (LAS V4.2) 
image analysis software, the length (major) and the width 
were measured.

Proteomic studies

Leaf protein extraction

Leaf samples (70 DAG) were powdered in liquid N2 and 
homogenized in extraction buffer (50  mM Tris–HCl, 
pH 8.0 + 25  mM EDTA + 500  mM thiourea) and 0.5% 
β-mercaptoethanol (BME). Homogenate was kept at 
− 20 °C for overnight precipitation after adding 10% TCA 
in acetone + 0.07% BME. Overnight samples were pelleted 
and washed with chilled acetone containing 2% BME and 
vacuum dried. Dried pellet was resuspended in 5 ml buffer 
containing 0.1 M Tris–HCl pH 8.0, 50 mM EDTA and 2% 
BME. Tris-saturated phenol (2.5 ml) was added in above 
homogenate and mixed by gentle inversion. Lower phenol 
phase was collected and proteins were precipitated in metha-
nol containing 0.1 M ammonium acetate and 1% β-ME. The 
precipitate was air-dried and washed with chilled acetone. 

Harvest Index (HI) =
Grain weight per plant

(Shoot weight + sprout weight)
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Dried pellet was solubilized in solubilization buffer (7 M 
urea, 2 M thiourea, 2% 3-[(3-cholamidopropyl) dimethyl- 
ammonio]-1-propanesulfonate (CHAPS; w/v), 25 mM DTT 
and 0.5% immobilized pH gradients buffers (v/v) at room 
temperature for 2–3 h. Protein concentration was quantified 
by Bradford assay using BSA as the standard.

Two‑dimensional gel electrophoresis and image analysis

Two-dimensional gel electrophoresis was performed as 
described by Sharma et al. (2017). Briefly, passive rehydra-
tion on immobilized pH gradient (IPG) strips of 7 cm, pH 
4–7 (GE Healthcare) was performed for 12 h in triplicates. 
The cocktail (135 µl) of rehydration buffer (7 M urea, 2 M 
thiourea, 2% CHAPS, 20 mM DTT, 0.5% v/v immobilized 
pH gradients buffers, 0.001% Bromophenol blue) and pro-
tein (120 µg) was prepared. IPG strip rehydration was per-
formed in the reswelling tray (Amersham Biosciences, Upp-
sala, Sweden). Ettan IPGphore-3 (GE Healthcare) system 
was used for Isoelectric focusing (IEF) at a fixed temperature 
(20 °C) in 5 step program comprises of: step 1—250 V for 
1 h, step 2—500 V for 1 h, step 3—1500 V for 2 h (all 
step and hold), step 4—4000 V for 2 h (Gradient) and step 
5—6000–12000 V (Sharma et al. 2017). Reduction (by 1% 
w/v DTT) then alkylation (by 2.5% w/v Iodoacetamide) of 
focused strip was performed in 5 ml equilibration solution 
(6 M urea, 30% w/v glycerol, 2% w/v sodium dodecyl sul-
fate (SDS) and 50 mM Tris–HCl buffer, pH 8.8) for 15 min 
separately. Equilibrated strips were placed on stacking gel 
and sealed with 0.5% agarose.

Polyacrylamide gels electrophoresis (PAGE) was carried 
out using Mini Protein tetra cell (Bio-Rad) in Tris–Glycine 
running buffer and 12% homogeneous SDS–polyacryla-
mide gel (acrylamide: Bis ratio of 29:1 supplied by Sigma-
Aldrich) at 70 V for 30 min after that 120 V till dye front 
moves out from the gel. Gels were stained with coomassie 
brilliant blue G250 (0.5%), destained (methanol: water: gla-
cial acetic acid = 10: 50: 40) and gel images were captured.

Protein abundance analysis was performed using Image 
Master 2D Platinum (IMP) 7.0 software (Amersham Bio-
science) based on relative % volume of protein spots in all 
triplicate images. Change in % volume ≤ 1.5-fold was taken 
as increased abundance and decreased ≥ 1.5-fold was taken 
as decreased abundance.

Seed protein extraction

Total seed proteins were extracted using a method described 
by Guo et al. (2012) with some modifications. 500 mg seeds 
were powdered in liquid N2 and homogenized in 1 ml extrac-
tion buffer-A (400 mM Sucrose, 35 mM Tris–HCl pH 7.00, 
200 mM EDTA, 1 mM DTT, 1 mM Phenyl-methane-sulfo-
nyl fluoride (PMSF)). Further 2 ml of extraction buffer-B 

(extraction buffer-A + 400 μl Triton X-100) was added in 
above homogenate and mixed properly for 3–5 min and then 
shaken vigorously. The supernatant was collected after twice 
centrifugation. Proteins from the supernatant were precipi-
tated overnight at − 20 °C by adding ¼ volume 10% TCA-
acetone. After that likewise leaf protein, seed proteins were 
extracted by phenol precipitation, purified, solubilized and 
quantified by Bradford method.

Seed SDS‑PAGE and image analysis

Seed protein samples were loaded on stacking gel with 2X 
gel loading buffer (125 mM Tris–HCL pH 6.8, 2% (w/v) 
SDS, 20% [v/v] glycerol, 100 mM DTT and 0.01% (w/v) 
bromophenol blue). Electrophoresis was carried out on 
slab gels (60 mm × 80 mm × 1 mm), using the discontinu-
ous buffer system. The 5% SDS–polyacrylamide stack-
ing gel was overlaid upon the 12% SDS–polyacrylamide 
separating gel (acrylamide: Bis ratio of 29:1 supplied by 
Sigma-Aldrich). Electrophoresis was performed in a stand-
ard Tris–glycine running buffer in Mini Protein tetra cell 
(Bio-Rad) at a constant 70 V using a Power PAC300 (Bio-
Rad) till dye front move out. Finally, gels were stained with 
coomassie brilliant blue G250 (0.5%), destained (Metha-
nol: Water: Glacial Acetic acid = 45: 45: 10) and gel images 
were captured. Image analysis was performed using Image 
Quant TL 7.0 software (GE Healthcare). Again, change in 
% volume ≤ 1.5-fold was taken as increased abundance and 
decreased ≥ 1.5-fold was taken as decreased abundance.

Mass spectrometry and protein identification

Differentially expressed spots/bands were excised from 
the gel, sample preparation and tryptic digestion were 
performed (Shevchenko et al. 2007). Cut gel pieces were 
chopped and destained with 50 mM ammonium bicarbo-
nate (ABC) in 50% methanol by incubation with occasional 
vortexing, depending on the staining intensity. Destained 
pieces were rehydrated and dehydrated with 25 mM ABC 
and 2:1 (v/v) solution of ACN: 50  mM ABC, respec-
tively. After three cycles of rehydration and dehydration, 
samples were lyophilized (Labconco, CentriVap Concen-
trator, USA) and again rehydrated with trypsin solution 
(10–20 µl from 20 ng/µl stock) for digestion. The above gel 
slices were emerged in 25 mM ABC after 30 min incuba-
tion upon the ice and kept overnight at 37 °C in a circu-
lating water bath (Multitemp II Thermostatic Circulator). 
Peptides were extracted in 50% acetonitrile (ACN) and 
1% trifluoroacetic acid (TFA) twice and concentrated to a 
final volume of 10-15 μl. The concentrated samples were 
spotted on Opti-TOF TM384 well target plate (ABSCIEX, 
USA) in equal volume with the matrix solution (5 mg/ml 
a-Cyano-4-hydroxycinnamic acid in 50% ACN containing 
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0.1% TFA). Mass spectrometry (MS) was performed from 
4800 Plus MALDI TOF/TOF Analyzer (ABSCIEX, USA), 
that generates monoisotopic peptide masses and were fur-
ther analyzed using 4000 Series Explorer software version 
3.5 (ABI). Protein identification was performed using mass 
signals from Mascot software (https​://www.matri​xscie​nce.
com) against the protein database (NCBInr/Swiss Prot). 
Search parameter includes; taxonomy- viridiplantae, fixed 
modification- carbamidomethylation, variable modification-
oxidation, peptide tolerance- ± 100 ppm or 1.2 Da (Dalton), 
MS/MS tolerance- ± 0.2 Da or 0.6 Da, respectively and pep-
tide charge + 1.

Statistical analysis

Effect of elevated level of carbon dioxide upon two maize 
varieties was tested with two-tailed Student’s t test having 
95% significance for all physiological, biochemical and 
yield parameters individually. Principal component analy-
sis (PCA) using PAST-3 [Paleontological Statistics, Ver-
sion 3.11] was performed for morphological, physiologi-
cal, biochemical and harvest parameters collectively. The 
protein spot intensities of differentially expressed proteins 
in a 2D-gel were calculated from three biological replicate 
gels. Venn diagram analysis was performed to distinguish 
variety-specific differentially abundant proteins.

Results

Physiological, biochemical and yield response

All physiological, biochemical and yield response of the 
maize varieties against elevated carbon dioxide were ana-
lyzed via principal component analysis (PCA). A clear sep-
aration was observed between ambient and elevated CO2 
treatment and between the two tested varieties (Fig. 1).

The PCA bi-plot explained two principal components, 
together explaining 72% of the observed variations. PC1 
disclosed 47% of the variability having a positive influence 
with most of the harvesting parameters including root, leaf 
and grain starch, root and leaf TSS. Biomass parameters at 
the early grain filling stage also contributed positively for 
PC1 (Supplementary Figure S2A). PC2, the second principal 
component disclosed 25% of the variability and the contri-
bution was mainly due to antioxidative enzymes and anti-
oxidants (such as SOD, APX, GR, glutathione) and most of 
the gas exchange parameters (Supplementary Figure S2B).

In yield attributes, PEHM-5 showed significantly 
increased root weight (50%), shoot weight (29%) and sprout 
weight (39%) and above-ground biomass (34%) due to eCO2 
treatment (Fig. 2, Table 1). Similarly, in SMH-3031 signifi-
cant increment in root weight (35%), sprout weight (32%) 

Fig. 1   PCA bi-plot showing two principal components with load-
ings of different variables (morphological, physiological and yield) 
and factor loadings of ambient (A) and elevated (E) CO2 treatment 
for two maize varieties (PEHM-5, SMH-3031). Variables: RW root 
weight, SW shoot weight, SprW sprout weight, PB plant biomass, 
Phot photosynthetic rate, Cond stomatal conductance, Trns transpira-
tion, WUE water use efficiency, Resp respiration, Fv/Fm-PSII maxi-
mal efficiency, APX ascorbate peroxidase, GR glutathione reductase, 
CAT​ catalase, SOD superoxide dismutase, TGlu total glutathione; 

GSSG oxidized glutathione; GSH reduced glutathione, MDA Malon-
dialdehyde, HLS Harvesting stage leaf starch, HRS harvesting stage 
root starch, GS seed starch, HLTSS harvesting stage leaf total solu-
ble sugars, HRTSS harvesting stage root total soluble sugars, GTSS 
seed total soluble sugars, Chla chlorophyll a, Chlb chlorophyll b, 
TChl total chlorophyll, Caro carotenoids, HRW harvesting stage root 
weight, HSW harvesting stage shoot weight, HSprW harvesting stage 
sprout weight, HPB harvesting stage plant biomass, NSPC number of 
seed per cob, TGW​ thousand seed weight, HI harvest index

https://www.matrixscience.com
https://www.matrixscience.com
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and above-ground biomass (21%) were found while shoot 
weight showed some insignificant increase of 5% in response 
to eCO2 (Fig. 2, Table 1). There was a 13% increase in the 
number of seed per cob in PEHM-5 and 42% in SMH-3031 
(p < 0.05). Interestingly, thousand seed weight was sig-
nificantly increased (6%) in PEHM-5 only and decreased 
by (10%) in SMH-3031 (Fig. 2, Table 1). We observed 
increased seed size in PEHM-5 (15% and 5% more seed 
length and width, respectively), while the size of the SMH-
3031 seeds remained unaltered (3.5% more length and 1.6% 
decreased width) (Fig. 3, Supplementary Table S2).

Seed Starch and total soluble sugar content

PEHM-5 showed 6% increment in seed starch and total solu-
ble sugar content in eCO2. On the other hand, SMH-3031 
showed 5% increased seed starch content and 8% decreased 
total soluble sugar content in eCO2 (Table 1). The increase in 
seed starch content was significant while total soluble sugar 
content was insignificant in both the varieties in response 
to eCO2.

Leaf protein profiling and functional classification

The image analysis of leaf protein 2D-gels showed the dif-
ferential abundance of proteins due to elevated carbon diox-
ide in both the varieties. PEHM-5 showed 55 differentially 
abundant proteins from 275 reproducibly detected protein 
spots. Similarly, SMH-3031 had 63 differentially abundant 
proteins out of 320 reproducibly detected spots (Fig. 4, 

Supplementary Tables S3). Of the total identified spots (48 
from PEHM-5 and 52 from SMH-3031) via mass spectrom-
etry, 60% were more abundant and 40% were less abundant 
in eCO2 condition.

Venn diagram analysis of identified proteins showed the 
distribution of differentially abundant proteins between the 
two tested maize varieties. PEHM-5 and SMH-3031 had 
29% and 28% unique proteins, respectively. About 43% of 
proteins were common in both the varieties (Fig. 5a, b; Sup-
plementary Table S4a, b). More abundant proteins included 
Fructose-bisphosphate aldolase (FBA), Chlorophyll a-b bp, 
Oxygen-evolving enhancer (OEE), 70 kDa Heat shock cog-
nate (HSP-70), Harpin binding protein, Actin-7 in PEHM-5. 
Similarly, SMH-3031 showed increased abundance of Ferre-
doxin-NADP reductase (FNR), Ribulose-1,5-bisphosphate 
carboxylase/oxygenase large subunit (Rubisco-LSU), Ribu-
lose-phosphate 3-epimerase (RPE), Glyoxylase, Chaperonin, 
Pro-resilin. Lower abundance of Adenylate kinase, ATP syn-
thase subunit α, Chlorophyll a-b bp, OEE (in PEHM-5) and 
Ascorbate peroxidase (APx), Ascorbate peroxidase-like pro-
tein, β-d-glucosidase (in SMH-3031) were found in eCO2.

Functional classification of the identified proteins showed 
that most proteins belonged to carbon metabolism (CM) 
followed by protein synthesis, assembly and degradation 
(PSAD); photosynthesis (PHO); energy metabolism (EM); 
defense (DEF); Cell redox homeostasis (CRH), amino acid 
metabolism (AAM) and cytoskeleton (CYT) (Fig. 6). Out 
of total differentially abundant proteins 56% in PEHM-5 
(34% + 22%) and 54% proteins in SMH-3031 (29% + 25%) 
collectively belonged to CM and PSAD category. In 

Fig. 2   Yield attributes of two Zea mays cultivars (PEHM-5 and 
SMH-3031) in ambient conditions (serving as a control) and with 
carbon dioxide concentrations enrichment (530 ppm) (mean ± stand-
ard error) (n = 15). a Shoot weight; b root weight; c sprout weight; 

d number of seed per cob; e thousand seed weight. Values represent 
average ± standard error. Significant results of student’s t test are 
marked with asterisks (*p < 0.05, **p < 0.01 and ***p < 0.001)
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PEHM-5, proteins of other functional groups belonged 
12% to PHO, 14% to EM and 18% to DEF, CRH, AAM 
and CYT collectively. Similarly, in SMH-3031 proteins 
of other functional group included PHO (13%), EM (8%) 
and DEF + CRH + AAM (25%). The detailed information 
of differentially abundant proteins of both maize varieties 
is summarized in Table 2; Supplementary Figure S3, Sup-
plementary Table S5.

Seed protein profiling and functional classification

Image Quant TL analysis showed a difference between 
eCO2 treatment and control as well as within cultivars. In 
PEHM-5, 27 bands were analyzed (p < 0.05); eight bands 
were more abundant and were identified as Globulin-2, Gly-
cosyl hydrolase family 31 protein, Lipid body-associated 
protein L2, Chitin-binding, type 1 and Chitinase. Similarly, 
in SMH-3031, 26 bands were analyzed (p < 0.05), eleven 
bands were found differentially abundant (4 more abundant, 
7 less abundant) (Fig. 7) and seven bands were identified 
as Globulin-1 S allele, 50kD gamma zein, Hydroxyproline-
rich glycoprotein family protein, Oleosin Zm-II and Recep-
tor protein kinase-like protein ZAR1. Identified seed protein 
names and their detailed information are given in Table 3.

Discussion

The free air carbon dioxide enrichment study was conducted 
in natural field condition to understand the response of two 
commonly grown maize varieties concerning biochemical, 
yield and proteomics changes. Elevated CO2 modulate vari-
ous biological process including respiration, photosynthe-
sis, antioxidant metabolism (Penuelas et al. 2013; Singh and 
Agrawal 2015; Xu et al. 2015). Results obtained from the 
present study showed unaltered photosynthesis (A) in both 
maize varieties under eCO2 condition (Table 1). Signifi-
cantly decreased transpiration (46%), respiration (65%) and 
water use efficiency (33%) were observed in PEHM-5 under 
eCO2. Decreased transpiration under high CO2 may be due 
to stomatal closure (increasing internal CO2 concentration 
tend to close stomata). Similarly, SMH-3031 demonstrated 
eCO2 induced reduction in respiration (70%) and water use 
efficiency (78%). These findings support the results obtained 
in previous studies on maize plants (Leakey et al. 2004, 
2006; Markelz et al. 2011; Mina et al. 2019; Ruiz-Vera et al. 
2015) and other C4 plants (Hatfield et al. 2011). One of the 
possible reasons for unaltered A could be the lack of pho-
torespiration or higher CO2 concentration in bundle sheath 
cell, where Rubisco resides. Another reason might be A at 
high photosynthetic photon flux density could be reduced 
by reduced Rubisco carboxylation capacity (Bunce 2014). 
Ghannoum et al. (2000) also reported unaffected A in C4 Ta
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plants under optimal growth condition (water and nitrogen 
fertilizer).

Photosynthetic pigments such as total chlorophyll, chlo-
rophyll a and b and carotenoid content decreased in both the 
varieties and decrease was significant in PEHM-5 (Table 1). 
Reduced concentration of photosynthetic pigments under 
high CO2 may reflect feedback inhibition of photosynthesis 
when C availability exceeds the utilization. Similar results 
were reported for many plant species grown under eCO2 
(Mishra et al. 2013 and reviewed by Dong et al. 2018). 
Decreased carotenoid content could lead to damage to pho-
tosynthetic assembly and ultimately chlorophyll destruction.

Elevated CO2 protects the plant from membrane dam-
age and was reflected in the form of significantly decreased 
MDA content in both maize varieties (Table 1). Reduced 
MDA content in plants grown under high CO2 might be due 
to reduced ROS generation (Mishra et al. 2013; Mishra and 
Agrawal 2014). Elevated CO2 promotes carboxylation over 
oxygenation at rubisco, reducing reactive oxygen species 
(ROS) formation (relaxation hypothesis; AbdElgawad et al. 
2015; Ainsworth et al. 2008; Booker et al. 1997; Long and 
Drake 1991; Zinta et al. 2014). This indicates that the stress-
mitigating effect of elevated CO2 cannot be universally 
attributed to increased antioxidant defenses. Moreover, Ele-
vated CO2 may or may not enhance the antioxidant system. 

Fig. 3   Effect of eCO2 
(mean ± standard error) on seed 
size of two Zea mays varieties 
(PEHM-5 and SMH-3031)

Fig. 4   Effect of eCO2 on leaf protein expression pattern of two Zea mays varieties; PEHM-5 (a, b) and SMH-3031 (c, d). 12% gel, 120 μg pro-
tein loading, pH range 4–7, Brilliant blue G stained two-dimensional gel representing control (a, c), 530 ppm eCO2 (b, d)
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It depends on plants species, crop variety, developmental 
stage or other abiotic stresses (reviewed in Xu et al. 2015). 
There are reports in which elevated CO2 had little or no 
effect on antioxidants, or even decreased their levels (Erice 
et al. 2007; Farfan-Vignolo and Asard 2012; Mishra et al. 
2013; Perez-Lopez et al. 2009). A key alternative process 
probably involved in the effect of elevated CO2 on oxidative 
stress is photorespiration. When measured simultaneously, 
reduced photorespiration correlates well with the decrease 
in H2O2 and lower oxidative damage levels under high CO2 
in some studies (Aranjuelo et al. 2008; Mishra et al. 2013). 
Although we did not measure photorespiration in the pre-
sent study, reduced level of antioxidant (total and reduced 
glutathione) and antioxidative enzymes in both the varie-
ties may reflect reduced photorespiration and decreased ROS 
level due to eCO2. Previous elevated CO2 studies suggest 
maize crops do not respond to elevated carbon dioxide in the 
absence of drought (Leakey et al. 2006; Erbs et al. 2015). 

Similar results in eCO2 grown plants were also reported in 
C3–C4 grasses- Caragana microphylla, Stipa grandis, and 
Cleistogenes squarrosa (Xu et al. 2014).

Total plant biomass increased under eCO2 condition in 
comparison to the ambient condition in both maize vari-
eties (Table 1). Under enriched CO2 condition, PEHM-5 
showed a more positive response in above-ground biomass 
than SMH-3031, probably because of enhanced allocation of 
photosynthetic assimilates towards shoot and sprout growth. 
This could be a reason for significantly increased thousand 
seed weight in PEHM-5 despite small increment in seeds 
number per cob. Despite this PEHM-5 had better seed qual-
ity in terms of significantly improved total soluble sugar 
and starch content of grains (Table 1). However, it has been 
shown that larger seeds showed higher germination rate and 
a better yield (Liu et al. 2012; Nik et al. 2011). So, there 
seems to be a trade-off in PEHM-5. Increased total soluble 
sugars and starch content under elevated CO2 is previously 

Fig. 5   Venn diagram of differentially abundant leaf proteins of two 
maize varieties (PEHM-5 and SMH-3031). a Variety specific overall 
differentially abundant proteins, b Abundance specific distribution of 

proteins. The overlapping areas suggest common proteins between the 
two groups (for detail see supplementary tables S4a, S4b)

Fig. 6   Functional classification of eCO2 responsive differentially 
abundant leaf proteins in two maize varieties. a PEHM-5; b SMH-
3031. Carbon metabolism (CM); Photosynthesis (PHO); Protein syn-

thesis, assembly and degradation (PSAD); Energy metabolism (EM); 
Defense (DEF); Cell redox homeostasis (CRH), Amino Acid metabo-
lism (AAM) and Cytoskeleton (CYT)
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reported (Drake et al. 2011; Huang and Xu 2015; Pandey 
et al. 2017) and reviewed (Dong et al. 2018).

Leaf proteomics

Carbon metabolism and photosynthesis‑related proteins

Malate dehydrogenase 1 (MDH1; S.No. 1) was found more 
abundant in PEHM-5 and less abundant in SMH-3031 
under eCO2. In PEHM-5 two protein spots were identified 
as Pyruvate orthophosphate dikinase 1 (PPDK1; S.No. 2) 
showing mixed abundance. In C4 plants these proteins play 
an important role to fix atmospheric CO2 into four carbon-
containing oxaloacetates (via PEPC) and malate (via MDH) 
inside mesophyll cells. More abundance of MDH and PPDK 
showed better CO2 incorporation in PEHM-5 over SMH-
3031. The SMH-3031 showed the mixed (mostly decreased) 
abundance of NADP-ME (S.No. 4) that lead to decreased 
decarboxylation rate and reduced malate consumption. 
The lower decarboxylation rate in the bundle sheath cells 
may also negatively influence the functioning of Calvin- 
Cycle. Though most of the Rubisco (S.No. 5) proteins were 
less abundant in PEHM-5, there was more abundance of 
Calvin cycle enzymes such as phosphoglycerate kinase 
(PGK), glyceraldehyde 3 phosphate dehydrogenase (G3P), 
fructose-bisphosphate aldolase (FBA), transketolase (TK), 
sedoheptulose bisphosphatase (SBPsae) (S.No. 6–11). The 
increased abundance of these enzymes can be explained by 
the availability of sufficient CO2 in the bundle sheath cell 
that would be incorporated in Calvin cycle into 3-phospho-
glycerate and further requirement of downstream proteins 
in PEHM-5, leading to better biomass and yield. The SMH-
3031 variety showed increased abundance of Rubisco but 
due to the limited availability of CO2 (from reduced NADP-
ME), Calvin cycle slowed down. Decreased abundance of 
PGK in SMH-3031 strengthens the above argument. In bun-
dle sheath cytoplasm, Phosphoenolpyruvate carboxykinase 
(PEPCK) converts OAA into phosphoenolpyruvate (PEP) 
and liberate CO2. This CO2 is then transported to bundle 
sheath chloroplast for the incorporation in the Calvin cycle. 
Increased abundance of PEPCK (S.No. 13) in SMH-3031 
and decreased abundance in PEHM-5 supports the require-
ment of CO2 in SMH-3031 to attain proper growth.

Among photosynthesis-related proteins, more abundance 
of 19 kDa thylakoid lumenal proteins (S.No. 14), Oxygen-
evolving enhancer proteins (S.No. 17) and less abundant 
Cytochrome b6-f complex iron-sulfur subunit (S.No. 15) 
was observed in PEHM-5. The mixed abundance of pho-
tosynthesis-related structural proteins in PEHM-5 could be 
a possible explanation for unaltered photosynthetic activ-
ity (Table 1). OEE proteins play a crucial role in photo-
synthesis by controlling the O2 evolution from photoly-
sis of water and conserve the stability of photosystem II Ta
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(PSII). In PEHM-5, more OEE showed its requirement for 
repairing protein damage and maintenance of OEE protein 
pool. SMH-3031 showed more abundant thylakoid lume-
nal proteins, Cytochrome b6-f complex iron-sulfur subu-
nit, OEE and Ferredoxin-NADP reductase (S.No. 14–18) 
still photosynthetic activity remained unaltered in SMH-
3031. The enhanced abundance of Cytochrome b6-f com-
plex iron-sulfur subunit and lower abundance of OEE was 
earlier reported in maize under drought (Benevenuto et al. 
2017). In another drought study, Zhang and Shi (2018) in 
alfalfa and Zhao et al. (2016) in maize reported the role of 
enhanced OEE with SOD in ROS detoxification. Benevenuto 
et al. (2017) correlated more abundance of FNR with high 
energy requirement to counter stress while studying the abi-
otic stress response of maize.

Protein synthesis, assembly and degradation‑related 
proteins

In eCO2, Chlorophyll a-b bp and Rubisco-LSU bp- beta 
(S.No. 19, 20) were more abundant in PEHM-5. Similarly, 
SMH-3031 showed more abundance of Rubisco bp and 
less abundance of chlorophyll a-b bp. The increased abun-
dance of these proteins could strengthen the photosynthetic 
machinery by promoting their respective protein assembly. 
Chloroplast protein synthesis 2 (cps2), Eukaryotic transla-
tion initiation factor (eIF), elongation factor (eEF) (S.No. 
21–24) are proteins which play important role in transferring 
genetic information from mRNA to proteins. Chloroplast 
protein synthesis 2 helps in ATP binding, cysteine t-RNA 
ligation and also involved in carbohydrate biosynthesis. 
More abundance of translation-related protein was observed 
in PEHM-5 while SMH-3031 showed the decreased abun-
dance of these proteins. Dworak et al. (2016) suggested 
drought causes a decreased abundance of cps2 and protein 
synthesis impairment in maize. Increased abundance of 

Fig. 7   Effect of eCO2 on seed protein expression pattern of two Zea mays varieties PEHM-5 and SMH-3031. 5% Stacking and 10% Resolving 
gel, 30 μg and 60 μg protein loading, Brilliant blue G stained SDS-PAGE gel
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proteins that assists in protein folding, assembly and trans-
port such as HSP-70 kDa, chaperonin 60 and 20 kDa (S.No. 
25–27) were observed in both the varieties. Their roles in 
quality control of proteins are well documented (Gupta et al. 
2018; Sharma et al. 2017; Wang et al. 2010). Peptidyl-prolyl 
cis–trans isomerase or cyclophilin TLP40 (S.No. 28) was 
more abundant in both the varieties exposed to elevated CO2 
condition helping in better growth and yield. Cyclophilin 
mediates various cellular functions including organogenesis, 
photosynthetic and hormonal signalling, stress adaptation, 
and defense response. TLP40 regulate a PSII specific phos-
phatase in the thylakoid membrane and helps in proteolysis 
and integration of new D1 protein subunits and regulates 
PSII protein turnover (Fulgosi et al. 1998; Romano et al. 
2004; Vener et al. 1999). Cyclophilins increase oxidative 
stress tolerance in rice (Lee et al. 2015a) and drought toler-
ance in rice and Arabidopsis (Lee et al. 2015b).

Energy metabolism and defense‑related proteins

Subunits of ATP synthase (α, β and γ) provide proton pump 
(H+) to generate ATP from ADP. As CO2 concentration 
increases carbon fixation increases and there is an increased 
demand of ATP (required for Rubisco regeneration) which 
leads to the shifting of photosynthesis control towards 
Rubisco regeneration (Ainsworth and Roger 2007; Aran-
juelo et al. 2011). Elevated CO2 grown PEHM-5 showed 
increased abundance of ATP synthase (α, β and γ) subunits 
(S.No. 29–31). Moreover, Rubisco regeneration/ recycling 
enzymes; fructose 1,6-bisphosphate aldolase, transketolase 
and sedoheptulose 1,7-bisphosphatase (S.No. 10–12) were 
more abundant in PEHM-5 (Rosenthal et al. 2011). Benev-
enuto et al. (2017) demonstrated the increased abundance 
of ATP synthase γ subunit to fulfil high energy demand in 
maize to overcome herbicide stress. More abundant Rubisco 
recycling enzymes were also demonstrated in wheat leaves 
exposed to eCO2 (Pandey et al. 2017). SMH-3031 showed 
more abundance of α- subunit and decreased abundance 
of γ-subunit leading to a reduction in ATP production and 
thereby affecting the Calvin cycle. Decreased or impaired 
abundance of Rubisco recycling enzymes (more abundant 
TK and less abundant SBPase) also lead to reduced activ-
ity of the Calvin cycle (Agrawal et al. 2002) resulting in 
decreased yield. The germin like protein (GLP) exerts 
SOD-like activity due to the presence of three histidine and 
one glutamate residue responsible for metal ion (Mn) bind-
ing (Rietz et al. 2012; Zhang et al. 2017). Harpin binding 
proteins are specific RNA binding proteins that bind to the 
hairpin loop of mRNA and helps in folding and protection 
of mRNA, determine interaction in a ribozyme and can 
also act as a substrate for the various enzymatic reaction. 
The increased abundance of GLP precursor (S.No. 32) and 
harpin binding protein (S.No. 33) was found in PEHM-5 

showing their better stability towards abiotic response. On 
the other hand, SMH-3031 showed the decreased abundance 
of GLP precursor, APx and APx like proteins and D-gly-
cosidase precursor (S.No. 32, 34–36) showing diminished 
defense response. However, more abundance of pro-resilin 
and glyoxylase 1 (S.No. 37 and 38) was found in SMH-
3031. Glyoxylase 1 help in the maintenance of glutathione 
homeostasis via recycling of reduced glutathione (GSH). 
The role of glyoxylase 1 is well documented in drought and 
other abiotic stresses induced defense (Dworak et al. 2016; 
Zadraznik et al. 2013).

Cell redox homeostasis, amino acid metabolism 
and cytoskeleton‑related proteins

Thioredoxin M-type, peroxiredoxin-5 and 2-cys perox-
iredoxin (S.No. 39–41) proteins help to maintain cellular 
redox homeostasis. These proteins were more abundant in 
PEHM-5 and less abundant in SMH-3031 under elevated 
CO2. Thioredoxins (Trxs) are small thiol: disulfide oxidore-
ductases, peroxiredoxin-5 (Prxs) and 2-cys peroxiredoxin are 
dithiol-disulfide peroxidase and are essential redox regula-
tory elements in plant metabolism. They play a crucial role 
in CO2 assimilation and redox homeostasis (Cheng et al. 
2014) and are major regulators of Calvin cycle enzymes 
(Okegawa and Motohashi 2015). Many other cellular pro-
cesses require Trx/Prx-mediated regulation including pho-
tosynthetic electron transport, oxidative stress response, 
starch and nitrogen metabolism, lipid biosynthesis, Ca+ 
mediated signalling, hormone signalling, protein homeosta-
sis and many more (reviewed by Dietz 2011; Liebthal et al. 
2018; Serrato et al. 2013). More abundance of Trx, Prx and 
2-cys Prx proteins suggest improved redox homeostasis and 
defense response in PEHM-5.

Aspartate aminotransferase (S.No. 42) belongs to amino 
acid metabolism and actin-7 (S.No. 43) is an integral part of 
Cytoskeleton. More abundance of these proteins was found 
in PEHM-5 leaves while SMH-3031 showed the decreased 
abundance of aspartate aminotransferase in eCO2 condition. 
More abundance of actin protein was previously reported 
for better phytohormone response in Arabidopsis (Gilliland 
et al. 1998) and improved drought tolerance in barley (Snie-
gowska-Swierk et al. 2015). In agreement, eCO2 induced 
abundance of actin-7 maintained the cytoskeleton and intra-
cellular organelles positioning, maintaining their function 
for better growth.

Seed proteomics

Globulin-2 (GLB2, nutrient reservoir activity), a salt soluble 
protein was more abundant in PEHM-5 (S.No. 1–4) and with 
mixed abundance in SMH-3031 (S.No. 9–11). GLB2 is the 
second most abundant seed storage protein in maize embryo 



3 Biotech          (2020) 10:203 	

1 3

Page 21 of 24    203 

after GLB1. GLB2 is encoded by the single-copy, highly 
polymorphic with several different alleles Glb2 genes (Fasoli 
et al. 2009; Ning et al. 2017; Xiong et al. 2014). Thus, multi-
proteoforms of GLB2 have obtained from gene polymor-
phism, post-translational modification and instance of degra-
dation. It can be a probable explanation for the identification 
of different GLB2 proteins in our study. In PEHM-5 seeds, 
Glycosyl hydrolase family 31 proteins, chitin-binding type 
1 and chitinase proteins (S.No. 5–7) were induced under 
eCO2 and these are involved in carbohydrate metabolism. 
Glycosyl hydrolase family 31 protein comprises of enzymes 
with several known activities and play an important role in 
the hydrolysis of O- or S-glycosidic bond, affecting cellu-
lose biosynthesis and therefore, biomass and yield (Lopez-
Casado et al. 2008; Szyjanowicz et al. 2004; Xie et al. 2013). 
Chitin-binding type 1 and chitinase proteins induced under 
eCO2 also play an important role in defense. SMH-3031 
showed less abundance of 50kD gamma zein (S.No. 12) 
under eCO2. Lipid body-associated protein L2 (S.No. 8) 
play an important structural role to stabilize the lipid body 
and was more abundant in PEHM-5. Hydroxyproline-rich 
glycoprotein (S.No. 13), oleosin Zm-II (Band No.14); having 
a structural role to stabilize cell shape were less abundant in 
SMH-3031. More abundance of Receptor protein kinase-like 
protein ZAR1 (S.No. 15), involved in signal transduction, 
was found in SMH-3031. The increased abundance of pro-
teins in PEHM-5 can be linked with improved grain weight 
and TSS in PEHM-5 under eCO2. Similarly, decreased abun-
dance of proteins in SMH-3031 can be linked with reduced 
grain weight and TSS in SMH-3031.

Conclusion

The present study showed that maize, a C4 crop, responded 
positively to elevated CO2. However, two varieties responded 
differently to eCO2. On one hand, PEHM-5 responded to 
eCO2 by higher biomass accumulation, larger seeds, and 
more seed starch and soluble sugars. On the other hand, 
SMH 3031 had less biomass accumulation, less 1000 grain 
weight and smaller seeds. Leaf proteins which played 
an important role in better growth and yield of PEHM-5 
included G3P, FBA, TK, SBPase, OEE, EF, HSP 70, GLP, 
peroxiredoxin and Actin. Furthermore, PEHM-5 seed pro-
teomics also revealed the higher abundance of Globulin-2, 
Glycosyl hydrolase family 31 protein, Chitin-binding and 
Chitinase protein resulting in better growth in this maize 
variety. However, protein activity measurements should be 
done to check whether the changes in protein abundance 
observed in this study could really be correlated with 
changes in maize traits observed. Moreover, there could be 
some post-translational modifications that regulate protein 
functioning. Further work should be done to evaluate the 

response of elevated CO2 along with elevated temperature 
and/or ozone on different varieties of maize.
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