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A B S T R A C T

It is highly significant to develop efficient soft sensors to estimate the concentration of hazardous pollutants in a
region to maintain environmental safety. In this paper, an air quality warning system based on a robust PM2.5

soft sensor and support vector machine (SVM) classifier is reported. The soft sensor for the estimation of PM2.5

concentration is proposed using a novel approach of Bayesian regularized neural network (BRNN) via forward
feature selection (FFS). Zuoying district of Taiwan is selected as the region of study for implementation of the
estimation system because of the high pollution in the region. Descriptive statistics of various pollutants in
Zuoying district is computed as part of the study. Moreover, seasonal variation of particulate matter (PM)
concentration is analyzed to evaluate the impact of various seasons on the increased levels of PM in the region.
To investigate the linear dependence of concentration of different pollutants to the concentration of PM2.5,
Pearson correlation coefficient, Kendall's tau coefficient, and Spearman coefficient are computed. To achieve
high performance for the PM2.5 estimation, selection of appropriate forward features from the input variables is
carried out using FFS technique and Bayesian regularization is incorporated to the neural network system to
avoid the overfitting problem. The comparative evaluation of performance of BRNN/FFS estimation system with
various other methods shows that our proposed estimation system has the lowest mean square error (MSE), root
mean square error (RMSE), and mean absolute error (MAE). Moreover, the coefficient of determination (R-
squared) is around 0.95 for the proposed estimation method, which denotes a good fit. Evaluation of the SVM
classifier showed good performance indicating that the proposed air quality warning system is efficient.

1. Introduction

In this modern era, environmental pollution is a major concern to
mankind. Industrialization is the prime reason for environmental pol-
lution in both developed and developing countries. The presence of
poor air quality can cause critical and chronic illness to human beings
(Ning et al., 2019) (Bai et al., 2018) (Qiu et al., 2019) (Shou et al.,
2019). The dense fog emerged over Greater London in 1952 for 4 days
which resulted in more than 10,000 deaths is considered one of the
primary reason for the initiative of monitoring the air quality of a re-
gion and carryout studies to have insight about the health issues caused
by various pollutants in air (Logan, 1953) (Wu et al., 2017). Even
though many countries have implemented various regulations to reduce
air pollution, maintaining a good air quality is still a major concern for
most economies. According to the latest data of World Health Organi-
zation (WHO), ambient air pollution has resulted in 4.2 million deaths

every year worldwide and 91% of world's population is still living in
regions where the air quality is over the WHO guideline limits (Jia
et al., 2019). Hence it is significant to determine the air quality of a
region and the data should be made available to public as a matter of
safety concern. PM is extensively monitored to study the air quality of a
region because of its dangerous environmental and health impacts.
Investigations shows that PM adversely affects more people than any
other pollutants and it has direct correlation to death rate and hospi-
talization cases because of cardiac and lung diseases (Wang et al., 2019)
(Zhang et al., 2019) (Querol et al., 2001). Severe visibility reduction
due to haze is another critical problem caused by the high concentra-
tion of PM in ambient air (Wang et al., 2017) and studies in Taiwan
show that both PM2.5 and PM10 have caused severe atmospheric visi-
bility problems (Lee et al., 2005) (Tsai, 2005) (Tsai and Cheng, 1999).
PM having an aerodynamic diameter less than 2.5 μm (PM2.5) has
gained significant attention as it can persist in the air for long time and
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is considered very harmful to human beings (Vu et al., 2012) (Niu et al.,
2015). It is composed of diverse hazardous chemicals (Yang et al.,
2014) and can easily penetrate into lungs and cardiovascular system of
human beings resulting in critical illness. Related studies in Taiwan
show that exhausts from traffic and secondary aerosols including
SO4

2−, NO3-, and NH4+ are the major factors of PM2.5 in ambient air
(Chen et al., 2001). PM having an aerodynamic diameter less than
10 μm (PM10) consists of heavy metals and the main contributing fac-
tors are vehicles, industrial emissions, and agricultural heating (Fang
et al., 1999). Even though PM10 is not as dangerous as PM2.5, related
investigations show that long-term exposure to PM10 can cause cardi-
ovascular and respiratory diseases (Mohamad et al., 2016) (Reche et al.,
2012) (Zheng et al., 2019). It is noted that there is around 1% increase
in the daily mortality rate for every 10 μgm−3 increase in PM10 con-
centration (Chen et al., 2003). Hence it is significant to estimate and
evaluate PM concentrations in an area, especially PM2.5.

Estimating the air quality of a region and issuing warning based on
the air quality value is critical to avoid exposure to hazardous pollu-
tants and thus avoid health issues. Soft sensors are an apt alternative to
expensive traditional instrumentation for estimation of PM2.5. The de-
velopment of soft sensors is inexpensive as it can be developed using
low cost hardware, namely microcontrollers. Another advantage of
using soft sensor for PM2.5 estimation instead of traditional instruments
is that estimation based on soft sensors are comparatively faster (Lin
et al., 2007). Moreover, many factors like the characteristic of the in-
struments, regional environmental issues etc. might influence the var-
iance of the data measured based on traditional instruments. In this
case soft sensors are a better alternative to traditional instruments.
Different approaches can be used to model and estimate various air
quality indexes and the choice of a method depends on the resources or
data available and the complexity of the problem addressed. Determi-
nistic air quality prediction methods are generally less stable and re-
quires more time when compared with statistical methods (Cobourn,
2010) (Isukapalli, 1999) (Zhu et al., 2018). Particularly in the case of
more complex estimations or modelling, statistical methods are the
most desirable solution. Statistical methods including autoregressive
integrated moving average model (ARIMA) (Arumugam and Saranya,
2018) (Zhou et al., 2014), hidden Markov models (HMM) (Sun et al.,
2013), gray models (Wang and Hao, 2016), support vector regressions
(SVRs) (Vapnik, 1999) (Lin et al., 2011), artificial neural networks
(ANNs) (Zhou et al., 2014), multiple linear regression (MLR) (Sousa
et al., 2007), and hybrid models (Sun and Sun, 2017) (Gan et al., 2018)
are adopted by researchers to determine air pollution indexes. Among
these methods, multiple linear regression is the widely used statistical
prediction method because of its accuracy and less complexity. Pre-
diction of NOx and PM10 concentrations using the predictors NO, NO2,
CO, O3 and PM2.5 is carried out based on multiple linear regression by
Vlachogianni (Vlachogianni et al., 2011). Non-linear regression ap-
proaches were also studied to estimate PM2.5 value by researchers
(Cobourn, 2010) (Baker and Foley, 2011). PM2.5 concentrations is re-
lated to various factors and hence statistical estimations of PM2.5 can be
made based on the measurement of these related factors. Related in-
vestigations show that estimation of PM2.5 from meteorological mea-
sures was carried out by researchers using non-linear exposure-lag-re-
sponse model (Chen et al., 2018). Neural networks can be used to
achieve non-linear statistical modelling and can make accurate esti-
mation with comparatively less statistical training. The significant ad-
vantage of using neural networks to estimate PM2.5 concentrations is
that it has the capability to identify all possible interactions between
input variables and it recognizes hidden nonlinear relationships be-
tween responses and input variables. Non-linear functions can be easily
modelled and valid generalization can be made to accurately estimate
the values if new test data is provided with the help of neural network
(Huang et al., 2017; Ruan et al., 2017). In this work, we have used a
novel approach of prediction technique based on neural network via
FFS to estimate the PM2.5 value. FFS helps the neural network to

achieve high performance by selecting the best possible subset of input
features. Apart from estimation, a warning system is critical in ana-
lyzing the air quality and take precautionary measures to protect our-
selves from the adverse effects of air pollution. We have used SVM
classifier to model the air quality warning system based on the con-
centration of estimated PM2.5 and other pollutants.

This work mainly focuses on the significance of air quality estima-
tion in Zuoying district of Taiwan and the novel approach is used to
achieve precise determination of PM2.5 concentration and modelling of
air quality warning system. Section 2 of the paper details the methods
and analysis used in this work. The importance of selecting Zuoying
district of Taiwan for this study, the air quality data and dataset pre-
paration, the importance of all the input variables used for the esti-
mation of PM2.5, descriptive statistics of various pollutants, and sea-
sonal variation of PM in Zuoying district are analyzed in this section.
Moreover, PM2.5 estimation based on BRNN/FFS technique and the
modelling of air quality warning system based on SVM classifier are
also explained in detail in this section. The results obtained from this
work and discussion are provided in section 3 and section 4 concludes
the paper.

2. Methods and analysis

2.1. Region of study

Taiwan is one of the most densely populated country with 652
persons per square kilometer as per the latest data of February 2019 by
the statistical bureau of Taiwan. Many regions in Taiwan is currently
facing alarming air pollution consequences because of the high level of
particulate matter in ambient air. The high population density, do-
mestic industries and automobile exhaust emissions are the major
contributing factors of air pollution in Taiwan (Chang et al., 2005)
(Yang et al., 2004) (Chen et al., 1999). According to Environmental
Protection Administration (EPA) of Taiwan, air quality index (AQI)
value beyond 50 is considered unhealthy and during winter season, the
air quality of southern and central Taiwan often registers in the red
zone, indicating very poor and unsafe air quality. According to EPA's
Department of Environmental Monitoring and Information Manage-
ment, China is a major source of PM2.5 in Taiwan's atmosphere because
of the geographic position. China has made immense progress in in-
dustrialization and it is noted that the strong winds carry the pollutants
from industrial areas in China and this contribute an increase in the
PM2.5 concentration of Taiwan (Wu et al., 2004) (Tsai and Chen, 2006).
Taiwan's topography also has an adverse influence to air quality of the
region as it is surrounded by high mountains and hence the local pol-
lutants tend to accumulate in the region if there is no wind. Hazardous
pollutants like sulfur dioxide (SO2), nitrogen dioxide (NO2), ground-
level ozone (O3), carbon monoxide (CO), and volatile organic com-
pounds (VOCs) primarily derived from the burning of fossil fuels con-
tribute to poor air quality of Taiwan. Scientific studies show that ex-
posure to PM2.5 is associated with adverse health problems in Taiwan
including chronic obstructive pulmonary disease (COPD), lung function
decline, ischemic heart disease, cancer, asthma, and pneumonia (Guo
et al., 2018) (Kuo et al., 2002) (Tsai and Yang, 2014) (Chiu et al., 2013)
(Hung et al., 2012).

Kaohsiung is the third most populous city in Taiwan and is con-
sidered as an industrial center of southern Taiwan as many factories
and power plants are located in the city. Our study is focused on esti-
mation of air quality in Zuoying district in Kaohsiung city. Fig. 1 depicts
the map showing the area of our study and is created using QGIS
software. Zuoying belongs to the inner Kaohsiung region and has a
population of 196,362 as per 2016 census. According to the report of
the environmental group Air clean Taiwan, Zuoying district has the
worst air pollution in Taiwan in terms of PM2.5 level in the year 2016.
Therefore, it is significant to conduct a study to analyze the air quality
of Zuoying district. The population density of Zuoying is 10,127 persons
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per square kilometer, which is almost 15 times the population density
of Taiwan. The Fushan village, which is the most populous village in
Taiwan is also located in Zuoying district. High population density is
one of the major contributing factor to worst air quality in Zuoying.
Another significant reason why air pollutants get accumulated in
Zuoying is because of the geographical positioning of the region. The
wind speed in this region is comparatively less during winter as it is
located against the wind direction in the western side of central
mountain range. As a result, the pollutants tend to accumulate in the
ambient air of the region as it is not carried away by the wind causing
deterioration in the air quality of the region. The biggest naval base of
Taiwan and Zuoying naval airfield are located in Zuoying district.
Studies shows that emissions from ship can adversely affect the air
quality in coastal areas as the concentration of pollutants including
CO2, CO, NOx, SO2 etc. increases (Fang et al., 2006) (Eckhardt et al.,
2013) (Tian et al., 2018). Further investigations have proved that ship
emissions can cause an increase in PM2.5 concentrations in a region and
can lead to premature deaths due to lung cancer and cardiovascular
diseases (Matthias et al., 2010). Aviation fuel combustion also dete-
riorates the air quality of a region as pollutants including PM, NO, CO
and hydrocarbons are released to atmosphere (Brzozowski and Kotlarz,
2005). So the naval airfield and naval base in Zuoying district can also
be a reason for the worst air pollution in the region.

2.2. Air quality data analysis

The datasets for this work is collected and prepared using the data
from environmental protection administration of Taiwan. We have
taken the hourly data of pollutants including PM10, PM2.5, CO, NO2,
SO2, and O3 pertaining to Zuoying district for preparing the dataset
used for the estimation of PM2.5 and modelling of air quality warning
system. Every input variables and target variable has 1587 data points
and we have used 70% of the samples for training and the rest of the
data for testing and validation purpose. The division of data was carried
out based on dividerand function using random indices. Data pre-
processing is an important step in data-driven soft sensors as incorrect
input data can result in inaccurate model. Moreover, the characteristic
of the instruments, regional environmental factors and other factors
might influence the variance of the data collected by EPA, Taiwan and
hence data preprocessing is a necessity in our work. From the hourly
data of pollutants collected from EPA, those observations that deviates

remarkably from normal values and missing data are considered as
outliers and are removed in the data preprocessing stage to achieve
accurate dataset for this study. Removal of these outliers is considered
as an important step in the development of soft sensors. Studies shows
that seasons have impact on the concentration of pollutants in an area
and hence we have taken pollutant data of four months of the year 2018
(January, April, July, and October) representing four seasons of Taiwan
mainly winter, spring, summer, and autumn respectively for creating
the estimation dataset.

To analyze the effect of seasons in PM concentration of Zuoying
district, we have computed the descriptive statistics of PM10 and PM2.5

during different seasons in Taiwan and given in Table 1. The mean,
mode and standard deviation are computed to have insight about
average concentration, most frequent value of each pollutant and var-
iations in the concentration of pollutants. When we analyze Table 1, we
can clearly conclude that seasons have a great impact on the con-
centration of PM in Zuoying district. The 24-h mean air quality
guideline values of WHO for pollutants PM10, and PM2.5 are 50 μg/m3,
and 25 μg/m3 respectively. The mean PM10 concentration during
winter, autumn, and spring seasons are 83.51 μg/m3, 67.81 μg/m3, and
61.12 μg/m3 respectively, which are all above the WHO guideline
limits. Moreover, the mean PM2.5 concentrations 39.74 μg/m3,
29.25 μg/m3, and 30.85 μg/m3 during winter, autumn, and spring
seasons respectively are also above the WHO guideline limits. The most
frequent PM10 and PM2.5 concentrations in the Zuoying area during
winter season, 67 μg/m3 and 33 μg/m3 respectively are also very high.
So comparatively, summer season is better in terms of air quality based
on PM concentration and the worst being winter season.

Correlation is a bivariate analysis and the correlation coefficient

Fig. 1. Map showing area of study.

Table 1
Seasonal variation in PM concentration.

Seasons PM10 (μg/m3) PM2.5 (μg/m3)

Mean Mode Standard
Deviation

Mean Mode Standard
Deviation

Spring 61.12 53 26.95 30.85 16 17.38
Summer 35.58 32 14.77 12.88 8 7.89
Autumn 67.81 62 35.58 29.25 26 17.10
Winter 83.51 67 33.12 39.74 33 18.42
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value varies between −1 and +1, where a value close to +1 or −1
indicates a strong association and a value close to 0 indicates a weaker
association. The Pearson correlation coefficient, Kendall's tau coeffi-
cient, and Spearman coefficient are computed to investigate the linear
dependence of concentration of different pollutants including SO2, CO,
O3, NO2, and PM10 to the concentration of PM2.5. Among all the pol-
lutants considered, PM10 returned a value closest to 1 for all the
aforementioned correlation coefficients indicating that PM10 has the
strongest association to PM2.5. Moreover, O3 returned a value closest to
0 indicating that it has comparatively the weakest association to PM2.5.
Also, we have got p-value of 0 for all the pollutant variables indicating
that the input variables considered are statistically significant for the
estimation of PM2.5. For column Ax in matrix A and column By in matrix
B, equations (1)–(3) given below denotes Pearson coefficient, Kendall's
tau coefficient, and Spearman coefficient respectively (Bolboaca and
Jäntschi, 2006). In the below equations, n denotes the length of each
column and d denotes the distance between the rank of 2 columns.
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The response plot of concentration of various pollutants including
SO2, CO, O3, NO2, and PM10 towards the concentration of PM2.5 is given
in Fig. 2. When we visualize Fig. 2, it is clear that the concentration of

PM10 is comparatively more linear towards the concentration of PM2.5

indicating that PM10 concentration will play the major role than the
concentration of other pollutants in the estimation of PM2.5 con-
centration.

2.3. Estimation of PM2.5 based on BRNN/FFS

The estimation of PM2.5 concentration was carried out based on a
Bayesian regularized neural network via FFS. Neural network has the
capability to recognize complex nonlinear relationships between re-
sponses and input variables and also determine all feasible associations
between predictor variables (Tu, 1996). Modelling of non-linear func-
tions is less complicated and valid generalization can be made to ac-
curately estimate the values if new test data is provided with the help of
neural network. Good generalization is a key necessity for a good neural
network system and one major issue faced by neural network is the
overfitting problem. In this context, regularization is an important
process to reduce the overfitting problems and hence achieve efficient
neural network system (Srivastava et al., 2014). So in our proposed
PM2.5 estimation system based on neural network, we have in-
corporated a Bayesian regularization to avoid the overfitting problem
and whereby achieve accurate estimation results. Bayesian regulariza-
tion helps to reduce a linear combination of network weights and
squared errors of neural network. The objective function parameters
should be assigned exact values and is key in regularization (Burden
and Winkler, 2008).

In our work, as we are incorporating Bayesian regularization, net-
work weights are considered as random variables and the density
functions of the weights are updated based on Bayes’ theorem as
mentioned below in equation (4) (MacKay, 1992):

=P W S N P S W N P W N
P S N

( | , , , ) ( | , , ) ( | , )
( | , , ) (4)

where W denotes network weights, S represents the dataset, and are
the hyper parameters, N denotes the neural network model used,
P S W N( | , , ) represents the likelihood function, P S N( | , , ) is the
normalization factor, and P W N( | , ) denotes the prior density. Fig. 3

Fig. 2. Response plot of concentration of various pollutants: SO2 (A); CO (B); O3 (C); NO2 (D); PM10 (E) vs concentration of PM2.5.
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shows the block diagram of PM2.5 estimation based on BRNN/FFS. A
three-layer neural network architecture with 10 neurons in the hidden
layer and 1 neuron in the output layer is used for the estimation of
PM2.5 in this work.

In this approach, selection of appropriate forward features from the
input variables is carried out using FFS technique to achieve high
performance for the estimation. FFS will aid to reduce the overfitting
problem and low efficiency of learning due to unnecessary features,
often regarded as dimensionality curse for BRNN (Jain and Zongker,
1997). FFS will return the best subset of input variables that can be
further fed to the neural network system to achieve high performance.
In the first stage of this proposed method of BRNN via FFS, we start by
selecting one input variable from the dataset as the subset and evaluate
the performance. This process is repeated for each input variable and
the variable that offers the best performance is selected and appended
to the relevant input variable list. After the selection of the best input
variable from the dataset, the aforementioned subset initiation process
is reiterated with two input variables, one from the input variables not
selected in the first subset evaluation process and the other one is the
input variable selected in the first stage of subset evaluation. The set of
input variables form a subset and the performance is evaluated for each
set of input variables created. The input variable that offers the best
performance in this second stage iteration is appended to the relevant
input variable list. This process is repeated by adding the input variable
which best improves our model in each iteration until we achieve the
intended performance, set as the threshold value. In this way we could
tune the input variables to meet optimal performance for the neural
network. Apart from the performance factor, another important ad-
vantage of this proposed methodology is the reduction in complexity of
the neural network system and hence comparatively easier interpreta-
tion of the system (Liu and Motoda, 2012).

The performance of the proposed estimation system was evaluated
to determine the efficiency of the PM2.5 concentration determination.
Performance evaluation was carried out by calculating MSE, MAE,
RMSE, and R-squared value. Equations (5)–(8) given below denote the
calculation of MSE, RMSE, MAE, and R-squared value respectively:
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where n is the number of data points, pi is the true value, p̃i is the
estimated value, and p̄i is the mean value.

2.4. Modelling air quality warning system

For modelling the air quality warning system, we have used a linear
classifier, namely SVM. SVM is a binary classifier and it make use of
geometric criteria instead of statistical information for classification. So
it doesn't require a more complicated calculation of statistical dis-
tribution in order to carryout classification task. The fundamental
technique of this classifier is the implementation of optimal hyperplane
algorithm (Barbosa et al., 2016). Optimal hyperplane is regarded as the
plane that provides maximum margin of dissociation between the target
classes. Consider the dataset for training is S= {(P1, q1), …, (Pk, qk)},
we have to solve the constrained optimization problem represented
below in equation (9) in order to determine the optimal hyperplane
depicted in equation (10) (Melgani and Bruzzone, 2004) (Maione et al.,
2018),

+ = …P i kmin 1
2

| | subject to qi((W·Pi a)) 1 where 1, ,
w

2
(9)

q(P)=W · P (10)

Based on the Lagrangian expression, the linear optimization pro-
blem can be written using Lagrange multipliers αi as the following
equation:
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Ultimately, the SVM implements the decision function described
below:
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=
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Fig. 3. Block diagram of PM2.5 estimation based on neural network via FFS.
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Fig. 4 shows the block diagram of the proposed air quality warning
system. As shown in Fig. 4, the PM2.5 concentration estimated based on
BRNN/FFS estimation system is fed as one of the input to SVM classi-
fier. Then the SVM classifier is trained over the feature vectors in-
cluding concentration of CO, NO2, SO2, O3, PM10, and PM2.5 for the
development of air quality warning system. The class allocation for the
SVM classifier is carried out based on the criterion given below, which
is developed according to the national ambient air quality standard set
by EPA, Taiwan for various pollutants.

Class +1: (SO2 concentration≥ 36 ppb) OR (CO concentra-
tion≥4.5 ppm) OR (NO2 concentration≥54 ppb) OR (O3 concentra-
tion≥0.055 ppm) OR (PM10 concentration≥ 55 μg/m3) OR (PM2.5

concentration≥15.5 μg/m3).
Class −1: (SO2 concentration < 36 ppb) AND (CO concentra-

tion < 4.5 ppm) AND (NO2 concentration < 54 ppb) AND (O3 con-
centration < 0.055 ppm) AND (PM10 concentration < 55 μg/m3)
AND (PM2.5 concentration < 15.5 μg/m3).

If the SVM classifier returns class +1 as the output, then an alert
warning is generated by the air quality warning system indicating that
the quality of air is bad and if the classifier returns class −1 as the
output, then no warning is generated by the air quality system in-
dicating that the quality of air is good.

A total of 1587 observations of each predictor were used for the
binary classification based on SVM for modelling the air quality
warning system. Six predictors were used in order to classify the air
quality of Zuoying district to two response classes and issue alert
warning accordingly. The performance of the classifier was evaluated
by computing accuracy, precision, recall, specificity, and F1-score
based on the equations given below (Sprague et al., 2014):

= ×Correct classifications
Number of observations

Accuracy 100
(13)

=
+

True positive
True positive False negative

Recall
(14)

=
+

True negative
True negative False positive

Specificity
(15)

=
+

True positive
True positive False positive

Precision
(16)

= × ×
+

Precision Recall
Precision Recall

F1 score 2 (17)

3. Results and discussion

Selecting the number of hidden neurons for a neural network system
is an important task as wrong selection can lead to either underfitting or
overfitting issues, which can indeed adversely affect the overall effi-
ciency of the system. Hence we have conducted a study to fix the
number of hidden neurons to be used in the proposed BRNN/FFS
system. We achieved the lowest RMSE when the number of hidden
neurons was fixed at 10 and also the processing time was around
4.3639 s only. Hence we have used 10 hidden neurons in the BRNN/FFS
estimation system. Table 2 compares the performance of the proposed
BRNN/FFS estimation system with other algorithms. Analyzing the
table, we can clearly understand that MSE, RMSE, and MAE are com-
paratively the lowest for our proposed system, which indicates the high
efficiency of PM2.5 estimation based on our method. Moreover, the
coefficient of determination is around 0.95 for the proposed estimation
method indicating a good fit.

Fig. 5A shows the performance graph of the BRNN/FFS estimation
system. The estimation system achieves the lowest MSE at an epoch of
175 and it is at this point, the best performance of the system is rea-
lized. Fig. 5B shows the error histogram of the of the BRNN/FFS esti-
mation system. The entire error range is divided into 20 bins and the
vertical black line at the center of the histogram indicates zero error
with around 185 instances in training and 35 instances in testing. We
can find that the training and testing instances having error value
greater than 7 is almost negligible indicating that the deviation of es-
timated PM2.5 concentration from its true value is very small in almost
all instances of training and testing.

Fig. 5C depicts the graph representing the PM2.5 concentration es-
timated based on the BRNN/FFS system and the true value. By visua-
lizing Fig. 5C, we can find that almost all the PM2.5 concentration va-
lues estimated are close to true value and there is only negligible
difference in the estimated value and true value. This indicates that the
proposed estimation system based on BRNN/FFS is efficient. The
aforementioned true value here indicates the results from traditional
instrumental analysis approach. So the results from Fig. 5C indicates
that the estimated PM2.5 concentration based on low-cost and flexible
BRNN/FFS is almost similar to that of expensive traditional instru-
mental analysis method. The traditional instrumental analysis method
involves the use of expensive instruments and there will be difficulty to
acquire results during unfavorable conditions. The regional environ-
mental conditions can adversely impact the accuracy of the pollutant
values estimated based on instrumental analysis method. In these cir-
cumstances, the proposed estimation system is a good alternative to get
faster and accurate results as our system has very low RMSE of 2.73 μg/
m3. The regression curve of the estimation system is represented in

Fig. 4. Block diagram of air quality warning system.

Table 2
Comparative evaluation of the performance of the proposed estimation system.

Algorithm MSE RMSE MAE R-squared

Linear SVM 33.686 5.8039 3.6078 0.82
Linear regression 33.349 5.7749 3.635 0.82
Fine tree 23.203 4.817 3.3663 0.88
Bagged trees ensemble 20.959 4.5781 2.8934 0.89
Quadratic SVM 17.73 4.2107 2.947 0.91
Boosted trees ensemble 17.383 4.1693 2.971 0.91
Gaussian process regression 8.6973 2.9491 2.3971 0.95
BRNN 8.347 2.8891 2.3652 0.95
BRNN/FFS 7.4972 2.7381 2.3292 0.95
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Fig. 5D and it shows that the R value (coefficient of correlation) of
predicted response and true response is 0.9786 which is close to 1 in-
dicating that the model prediction is very precise in this work.

Among the total of 1587 data points used for SVM classifier, 1555
data points are classified correctly and there were 32 misclassifications.
Out of the 1555 correct classifications, there were 984 true positives
and 571 true negatives. In the 32 misclassifications, 21 were false po-
sitives and 11 were false negatives. We have obtained an accuracy of
98% and F1-score of 0.983 for the air quality warning system based on
BRNN/FFS and SVM classifier. All the performance metrics we eval-
uated returned perfect values indicating that the proposed air quality
warning system is efficient.

Only few studies were attempted to estimate PM2.5 in Taiwan based
on different machine learning approaches using various factors. Jung
et al. estimated ground-level PM2.5 concentrations in Taiwan using
long-term satellite based aerosol optical depth, localized land use data,
and meteorological variables. The highest fitting achieved for the es-
timation model was 0.77 with a RMSE of 11.4 μg/m3 (Jung et al.,
2018). Also, Wu et al. assessed PM2.5 concentrations in Taiwan based on
a hybrid kriging/land-use regression model. The model was developed
using data collected from 71 EPA monitoring stations from 2006 to
2011. The highest R-squared value achieved for the regression model
was 0.88 with an RMSE of 5.02 μg/m3 (Wu et al., 2018). When we
consider similar studies carried out for PM2.5 estimation in different
places other than Taiwan, we can find that Wang et al. estimated PM2.5

concentration using deep neural network (DNN) in Bei-
jing–Tianjin–Hebei, China. In this study, meteorological parameters
and gaseous pollutant concentrations were considered as predictor
variables in order to estimate PM2.5 concentration. The R-squared value

achieved for the estimation of PM2.5 was 0.87 and the RMSE was
27.11 μg/m3 (Wang and Sun, 2019). Furthermore, Liu et al. conducted
study based on random forest approach to estimate PM2.5 concentration
from reflectance at the top of the atmosphere. The model resulted in a
R-squared value of 0.86 and an RMSE of 17.3 μg/m3 for hourly PM2.5

concentration estimation (Liu et al., 2019). Gaussian process method
was employed by Yu et al. and geographically-weighted gradient
boosting machine (GW-GBM) method was used by Zhan et al. for the
estimation of PM2.5 resulting in RMSE value of 21.87 μg/m3

(R2= 0.81) and 23 μg/m3 (R2= 0.76) respectively (Yu et al., 2017)
(Zhan et al., 2017). When we make a comparative evaluation of our
result with all the aforementioned studies, we can find that we are able
to achieve an accurate estimation of PM2.5 concentration in this work
with a relatively low RMSE of 2.73 μg/m3 and high R-squared value of
0.95. This indicates the high performance of the PM2.5 estimation based
on BRNN/FFS approach.

4. Conclusion

Determination of PM2.5 concentration is significant as it is con-
sidered very harmful to mankind and its estimation will aid to get a
clear idea about the air quality of a region. Zuoying district of Taiwan
has the worst air pollution due to high concentration of PM2.5 in the
region and hence study of air quality of this region is important.
Descriptive statistics of various pollutants in Zuoying district and its
seasonal variation is analyzed based on the dataset prepared from EPA,
Taiwan. The analysis of correlation coefficients of concentration among
various pollutants shows that PM10 is highly correlated to PM2.5 con-
centration. The proposed novel approach of BRNN/FFS in the

Fig. 5. Performance graph of the BRNN/FFS estimation system (A), error histogram (B), estimated value vs true value (C), and regression curve (D).
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development of PM2.5 soft sensor resulted in accurate and less complex
estimation of PM2.5 concentration. The study conducted to evaluate the
performance of BRNN/FFS system shows that the proposed method has
achieved the lowest MSE, MAE, and RMSE than other estimation
methods and the calculated R-squared value shows good fit. The
modelling of air quality warning system is carried out based on SVM
approach to achieve high efficiency and quick response, which are
important factors when we consider warning systems. We have
achieved accurate results for BRNN/FFS estimation and SVM classifier
indicating that the proposed air quality warning system is efficient.
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