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 X-linked juvenile retinoschisis (XLRS) is the most com-
mon cause of macular dystrophy in males, resulting in vision
loss early in life [1]. Estimations of its prevalence range from
1:5000 to 1:25000 [2]. It is characterized by a mild to severe
decrease in visual acuity, foveal schisis due to a splitting of
the retinal layers, progressive macular atrophy, and reduction
in the ERG b-wave [3]. Lesions in the peripheral retina have
been observed in half the cases. Clinically the presentation is
variable; most patients present with progressive visual impair-
ment between five and ten years of age, but a proportion of
patients present in infancy with squint, bilateral nystagmus
and highly elevated bullous retinoschisis (RS) [4,5]. During
the course of the disease, complications such as retinal de-
tachment, vitreous hemorrhage and neovascular glaucoma can
arise, leading to a poor visual outcome [3,6].

The RS1 gene responsible for XLRS was identified by
positional cloning and found to encode a 24-kDa protein called
retinoschisin, or RS1 [7], which is secreted from photorecep-
tor and bipolar cells, as a disulfide-linked oligomeric com-
plex [8]. The function of retinoschisin is unknown. The RSI
gene contains a discoidin domain. Disease-causing mutations
are clustered in regions that encode this domain, suggesting
that it is crucial for the normal function of retinoschisin. Sev-
eral deleterious gene mutations have been reported in differ-

ent ethnic groups [1]. The RS1 gene maps to the distal short
arm of the X chromosome (Xp22) [9] and consists of six ex-
ons that span approximately 15 kb of genomic DNA. Over
130 different mutations in RS1 are associated with
retinoschisin. These include small intronic deletions, nonsense
and missense mutations, frameshift insertions, deletions, and
splice site mutations. Most are missense mutations in exons
4-6 encoding the discoidin domain. A large number of these
involve cysteine residues. Most mutations in the discoidin
domain result in protein misfolding and intracellular reten-
tion by the endoplasmic reticulum (ER) quality control sys-
tem [6]. The discoidin domain is implicated in cell-cell adhe-
sion and phospholipid binding, a function which is in agree-
ment with the observed splitting of the retina in XLRS pa-
tients, indicating that RS1 is important during retinal develop-
ment [1,8].

Some published reports have described the clinical fea-
tures with defined mutations in the RS1 gene [10,11,12]. In
this study, we discuss five mutations, two of which have not
been previously described, and we determine the clinical phe-
notype associated with these genotypes in six patients.

METHODS
Clinical evaluation:  Subjects suspected to have XLRS were
recruited to the study from outpatients presenting at a tertiary
care eye hospital. Eligible participants were prospectively
evaluated by visual acuity tests, indirect ophthalmoscopy, slit
lamp biomicroscopy. Ganzfeld electroretinography (ERG), and
optical coherence tomography (OCT) with (Stratus OCT),
version 4.0.1, (Carl Zeiss Meditec, Dublin, CA). The clinical
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diagnosis of XLRS was based on the presence of foveal schisis
with/without peripheral schisis, supported by typical findings
on ERG and OCT, as well as a positive family history. Family
members, where available, were screened for fundus findings
suggestive of XLRS; further evaluation was similar when clini-
cally suggested. The study protocol, which followed the te-
nets of the Declaration of Helsinki, was approved by the insti-
tutional review board. Informed consent was obtained from
the patients and their family members prior to their evaluation
in the course of the study. The clinical management was con-
servative in all cases. Six unrelated male patients with XLRS,
their available family members, and 100 healthy control sub-
jects, were recruited for the study.

Genetic evaluation:  DNA extraction and single strand
conformation polymorphism (SSCP) was performed as fol-
lows: Venous blood (5 ml) was collected for genomic DNA
extraction using the salt precipitation method described by
Miller et al. [13]. For all probands, polymerase chain reaction
(PCR) was carried out to amplify the exonic regions of RS1,
using the primers in Table 1 [1].

The amplified products were diluted with an equal vol-
ume of loading buffer (95% formamide: Sd Fine chemical labo-
ratories, Pvt. Ltd., Mumbai, India, 10 mM NaOH: Qualigens,
Mumbai, India, 0.05% bromophenol blue: Himedia
Laboratoris, Pvt. Ltd., Mumbai, India, 0.05% xylene cyanol:
LOBA CHEMIE, Mumbai, India) and heated at 98 °C for 5
min followed by snap cooling on ice . Denatured amplicons
were loaded onto 12% polyacrylamide gel and electrophore-
sed at 800 V for 8-10 h at room temperature. The gels were
silver stained according to the modified protocol of Bassam et
al. [14].

DNA sequence analysis:  PCR products that demonstrated
a mobility shift in SSCP gels were re-amplified, using the same
set of primers and column purified using Perfect-prep gel clean-

up kit (Eppendorf, Hamburg, Germany). Next we performed
the sequencing in Balgach, Switzerland at Microsynth using
dye terminator chemistry on an Applied Biosystem (ABI)
model 3730 automated sequencer (Microsynth, Balgach, Swit-
zerland). RFLP analysis was carried out to identify the
c.637C>T mutation using MSP1 restriction enzyme.

RESULTS
 Six male patients with XLRS and their available family mem-
bers were enrolled in the study and analyzed for RS1 muta-
tions, which revealed significant changes. Five genetic varia-
tions were identified: c.574C>T, c.583A>G, c.608C>T,
c.617G>A, and c.637C>T. Two of these, c.583A>G and
c.617G>A, are novel. Similar to previous reports, all the mu-
tations were missense and nonsense, and they were clustered
in exon 6 encoding the discoidin motif. The amino acid change
of each identified mutation is given in Table 2. We did not
find any polymorphic variations in patients as well as in con-
trols. The clinical phenotypes of genetically analyzed patients
are summarized in Table 3. The range of age was 10-30 years.
OCT showed multilayered schitic cavities in the macula, pre-
dominantly in all participants OCT showed multilayered schitic
cavities in the macula, predominantly in the plexiform layers.
ERG findings showed selective b-wave suppression in all pa-
tients. The pathogenic effects of the mutations identified were
confirmed by excluding their presence in 100 normal controls,
of whom (more than 60% were males).

Patient 1 with c.574C>T mutation:  A c.574C>T muta-
tion was found in a 10-year-old male. His best corrected vi-
sual acuity (BCVA) was OD: 6/18, OS: 6/60. He had foveal
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TABLE 1. SEQUENCES OF OLIGONUCLEOTIDE PRIMERS USED IN THE

PRESENT STUDY ON RS1 GENE MUTATIONS

                                   Product
                                    size
Exon         Primer (5'-3')         (bp)
----   -------------------------   -------
 1     F: CTCAGCCAAAGACCTAAGAAC      216
       R: GTATGCAATGAATGTCAATGG
 2     F: GTGATGCTGTTGGATTTCTC       177
       R: CAAAGTGATAGTCCTCTATG
 3     F: CTGCCCTGCCTCTCTGGTTG       178
       R: GGTGTTCCCAATGACTGTTCC
 4     F: GGTGCTTGTTGAGTATTGAG       219
       R: AAAATCCCCGGGCCCTGC
 5     F: GAGTCTCTCGGTGACTCGGT       263
       R: GAGCTGAAGTTGGTTTGGGA
 6     F: CCGATGTGATGGTGACAGG        262
       R: TGTGTGAGGGGGTCCCCTA

This table describes, the primers used to amplify the coding regions
of the RS1 gene (Retinoschisis consortium). Below bp indicates base
pair.

TABLE 2. GENETIC VARIATIONS IN PATIENTS WITH X-LINKED JUVENILE

RETINOSCHISIS

This table shows the mutations and their corresponding aminoacid
changes identified in this study. Asterisk (*) marks a novel genetic
variation. The other mutations were previously reported by the
Retinoschisis Consortium.
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schisis in his the right eye, and peripheral schisis in both eyes.
There was a full-thickness macular hole in his left eye. The
clinical findings of this patient have been previously reported
elsewhere [15].

Patient 2 with c.583A>G novel genetic variation:  A
c.583A>G variation was identified in an 11-year-old male. His
BCVA was OD: 6/60, OS: 6/60. Clinical features associated
with this mutation were foveal and a temporal peripheral schisis
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Figure 1. Fundus photography of patient 4 with X-linked juvenile retinoschisis.  Composite fundus photograph of the right eye of patient 4
showing total rhegmatogenous retinal detachment secondary to inferotemporal schisis, which is evident as elevated inferotemporal retinal
vessels (vitreous veils). The foveal schisis is obscured by the detachment.

TABLE 3. CLINICAL CHARACTERISTICS OF PATIENTS WITH X-LINKED RETINOSCHISIS

The following abbreviations were used: macular hole (MH), vitreous hemorrhage (VH), and rhegmatogenous retinal detachment (RRD).
Within table BCVA represents best-corrected visual acuity; ERG represents electroretinography; OCT represents optical coherence tomogra-
phy.
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observed bilaterally. He had rhegmatogenous retinal detach-
ment (RRD) in both eyes, although confined to the temporal
schisis. To the best of our knowledge, c.583A>G transition
leading to the replacement of isoleucine at position 195 by
valine has not been previously described and is not highly
conserved across the species.

Patient 3 with c.608C>T mutation:  A c.608C>T muta-
tion was observed in a 20-year-old male. His BCVA was OD:
6/18, OS: 6/18. He had bilateral foveal schisis, with normal
periphery.

Patient 4 with c.617G>A novel nonsense variation:  A
c.617G>A nonsense mutation was found in a 10-year-old male.
His BCVA was OD: 5/60, OS: 6/60. He had foveal and pe-

ripheral schisis in both eyes. His ERG findings showed sup-
pression of a and b-waves in his right eye, although b-wave
amplitude was depressed to a greater extent. He had total RRD
in his right eye (Figure 1). Surgical intervention was proposed;
but was declined by the patient.

The parents (I-1, I-2) and brother (II-3) of patient 4 also
participated in this study (Figure 2A). His mother (I-2) was
heterozygous for the same mutation, but the father (I-1) and
brother were unaffected. Mutation analysis of RS1 and se-
quencing result showed a c.617G>A transition that resulted in
a nonsense mutation (Figure 2B) where an evolutionarily
highly conserved tryptophan was replaced by a stop codon X
at position 206 (Figure 2C).
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Figure 2. Genetic analysis of patient 4 with X-linked juvenile retinoschisis.  A: Family pedigree of patient 4, who exhibited a novel c.617G>A
mutation. The arrow indicates proband. The shaded box denotes that the proband affected with retinoschisis. The dotted circle indicates
carrier. B: This sequence chromatogram compares the novel c.617G>A nonsense mutation with the sequence derived from control. The DNA
of proband II: 2 revealed a homozygous G to A transition in exon 6 of RS1 gene that leads to the replacement of aminoacid tryptophan to stop
codon at position 206. C: A multiple sequence alignment for I195V and W206X novel genetic variants of RS1 gene, in different species and
compared with other retinoschisin and discoidin domain proteins. The amino acids boxed in red indicate the position of I195V, and W206X.
The aminoacid tryptophan is highly conserved among the various species.
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Patient 5 with c.637C>T transition:  A c.637C>T transi-
tion was observed in a 17-year-old male. His BCVA was OD:
6/6, OS: 6/36. He has foveal schisis in his right eye, and pe-
ripheral schisis in both eyes (Figure 3A). He demonstrated a
spontaneously settled inferotemporal RRD involving the left
macula, with consequent foveal atrophy (Figure 3B). His right
eye showed evidence of foveal and parafoveal atrophy.

Patient 6 with c.637C>T transition:  A c.637C>T transi-
tion mutation was also identified in patient 6, a 30-year-old
male. His BCVA was OD: 6/24, OS: 6/36. He had foveal and
peripheral schisis in both eyes. He developed a vitreous hem-
orrhage (due to avulsion of floating vessels) in his left eye,
which settled spontaneously over two months.

DISCUSSION
 Mutations of the RS1 gene are known to cause many cases of
inherited and sporadic XLRS. Previous reports have described
the clinical features in families with defined mutations in the
RS1 gene [1,10-12]. In the present study, patients with the clini-
cal phenotype of XLRS had five different genetic variations
in the RS1 gene. All patients had typical clinical features, such
as foveal schisis (with or without peripheral RS) and ERG b-
wave suppression. Four patients had bilateral foveal schisis.
Five patients had a temporal peripheral schisis. Three patients
had RRD with variable extent. In addition to that, two pa-
tients had atypical findings. The right eye of patient 5 demon-
strated evidence of foveal and parafoveal atrophy. The left
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Figure 3. Fundus photography of
patient 5 with X-linked juvenile
retinoschisis.  A: Composite fundus
photographs of the right eye of pa-
tient 5 showing foveal schisis, as
well as peripheral vitreous veils. B:
Composite fundus photograph of the
left eye of the same patient, show-
ing spontaneously settled
inferotemporal retinal detachment
involving macula, with consequent
foveal atrophy.
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eye of patient 1 exhibited a full-thickness macular hole. Four
of the genetic variants identified in this study were noted to be
sporadic cases, and one novel genetic variant c.617G>A was
identified in a family.

A c.617G>A novel nonsense mutation was identifiedin
patient 4. His mother had the same mutation, although in the
heterozygous condition, and his brother and father were unaf-
fected. The co-segregation of this gene mutation with the RS
phenotype and the RS carrier status as well as its complete
absence in normal control chromosomes indicate this genetic
change is responsible for the RS pathology in this family and
that the disease is transmitted as an X-linked recessive trait.
Another non-sense mutation involving a different nucleotide
c.618G>A in the same codon was previously reported in a
French population [1]. Our results are also consistent with this
report. Highly conserved tryptophan was replaced by stop
codon X at position 206, causing premature termination that
might truncate the protein retinoschisin. ERG findings showed
suppression of a and b waves. Total RRD was observed that
might be due to loss of function of the protein due to prema-
ture termination.

Patient 2 was found to have a c.583A>G novel genetic
variation, leading to the replacement of non-conserved amino
acid isoleucine at position 195 by valine. This patient had typi-
cal retinoschisis clinical findings.

All the identified mutations are present in the hotspot re-
gion at exon 6 reported by the retinoschisis Consortium [1].
These belong to the discoidin motif of retinoschisin protein.
Retinoschisin is a soluble secretory protein predicted to have
a globular conformation [16]. Recent in vitro expression analy-
sis revealed that the pathologic basis of RS is intracellular
retention and defective secretion of the mutant retinoschisin
as a result of protein misfolding [17]. Many missense and pro-
tein-truncating mutations of the causative gene RS1 have now
been identified and are thought to be inactivating. These mu-
tations are mainly located in exons 4-6. An alignment of 32
discoidin domain proteins was constructed to reveal the con-
sensus sequence and to deduce the functional importance of
the identified [1].

Our data provides evidence that the five RS1 gene muta-
tions identified in our series of XLRS patients might lead to
disruption of gene expression. Further functional insights needs
to be elucidated. The genotypic approach will provide further
understanding of the influence of genes in the pathogenesis of
clinical disease and the correlation of the genotype with the
phenotype. Carriers of mutant genes can be identified, enabling
the identification of offspring at risk for specific disease as
well as precise diagnosis before the development of typical,
clinically recognizable phenotypes.
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