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Abstract: We report a new numeric dispersion compensation method for the device’s dispersion
mismatch in a spectral-domain optical coherence tomography (SD-OCT) for imaging the
iridocorneal angle of human cadaver eyes. The dispersion compensation term is calculated
by an automated iterative process that minimizes the wavenumber-dependent variance of the
ridge extracted from the spatial-spectral distribution of a mirror’s spectral interferogram using
short-time Fourier transform (STFT). Our method can extract different amounts of dispersion
robustly, and the algorithm can work in a wide range of combinations of window sizes and overlaps
when using an STFT. Comparable point spread functions (PSFs) are shown to a traditional
polynomial fitting method. Lastly, we verified that our imaging system is able to visualize
the iridocorneal angle details, such as trabecular meshwork (TM), Schlemm’s canal (SC), and
collector channels (CCs), which are important ocular outflow structures associated with glaucoma
management.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a micron-scale, non-contact three-dimensional imaging
technique that employs low coherence light to derive the structural information within optically
scattering media, such as biological tissues [1]. Since its advent, it has been widely used
in ophthalmology, dermatology, dentistry, lung, gynecology, urology, kidney transplantation,
oncology, artwork examination, and nondestructive material testing [2]. Its popularity is attributed
to its high imaging resolution on a micrometer scale and non-destructive nature.

In the sub-field of the anterior segment (AS-) OCT, various research groups have explored
and reported iridocorneal angle imaging [3–6]. These systems include the time-domain AS-
OCT [3], spectrum domain AS-OCT [4], and the swept-source AS-OCT system [5] in the
research field, as well as some current clinic systems in the industries [6]. All these works were
developed for diagnostic purposes but not directly related to the monitoring of the treatment
region, for example, in glaucoma surgery. Visualization of the iridocorneal angle details provides
ophthalmologists/researchers a direct view of the ocular outflow structures, such as the trabecular
meshwork (TM), Schlemm’s canal (SC), collector channels (CCs), and vessels in the corneoscleral
limbus region [7]. The TM and the nearby SC are both ring structures and are sometimes hard
to find on the OCT images given their deep-seated nature and shadowing effect caused by the
overlying blood vessels [8]. CCs [9] are smaller opening structures typically 30 µm in diameter
with large variation and occasionally appear connecting the outer wall of the SC and episcleral
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veins. These structures, affected by some physiological or pathological changes, are directly
or indirectly responsible for reduced aqueous outflow in human eyes, leading to elevated eye
pressure and glaucoma development. To restore the natural ocular aqueous outflow, one can
drain into some part of the TM tissue [7] by different methods, e.g, medical, surgical, and laser
treatments [10,11]. We attempted to develop a numerical dispersion compensation to obtain a
high-resolution OCT imaging system, providing researchers some insights into details of the
treatment areas for glaucoma surgeries. However, the axial resolution of a typical AS-OCT is
typically insufficient to resolve the angle details. Since axial resolution relates to the Fourier
transform of the spectra, one needs to exploit an ultra-broadband light source. However, the
dispersion, which is due to the frequency-dependent refractive index of a dispersive material,
increases with the increased optical source bandwidth, causing fringe signal chirping and point
spread function (PSF) broadening [2].

Various strategies have been used to achieve an optimal axial resolution for high-resolution
OCT applications by dispersion compensation either via hardware or software-based methods.
Hardware dispersion compensation includes inserting optical materials [12] or using a grating-
based phase control delay line [13], both of which are capable of correcting some degree of
dispersions. To further improve the axial resolution, numerical dispersion correction is usually
needed. It is low-cost, provides continuous tunability, and can be easily applied to other OCT
platforms. Some numerical methods that directly measure the dispersion component, have
been reported by Singh et al. [14] and Attendu et al. [15], where two mirror measurements
at conjugate positions of the zero-delay line are used. Other numerical methods are to find
the dispersion mismatch to be compensated, a phase term e−i∆Φ, multiplied by the dispersed
cross-spectral density function resulting in dispersion-removed interferograms. Cense et al.
[16] proposed a method to obtain the phase function ∆Φ by polynomial fitting and obtaining
the non-linear orders of the unwrapped phase of the coherence function of a well-reflecting
reference point. Using mirror measurements on the sample arm at a range of different optical path
differences, Uribe-Patarroyo et al. [17] performed the simultaneous k-linearization and dispersion
compensation based on the fact that the correct k-mapping function is achievable by obtaining
the depth-independent chirp of the dispersive fringe. Wojtkowski et al. [18] proposed an iterative
procedure to attain the phase function by optimizing the image sharpness as the objective function,
which compensates for second and higher-order dispersions. Furthermore, Yasuno et al. [19]
used the information entropy of the image as the optimization metric. Most recently, Hillmann et
al. [20] reported that short-time Fourier transform (STFT) with small enough windows can be
used to extract signal peak shifts by cross-correlating the sub-bandwidth reconstructed images,
after which the linear part of the phase function was approximated by integrating the peak shifts
∆z(k) over k. Ni et al. [21] further attempted to minimize the information entropy of the spectral
centroid image as the sharpness metric in the iterative optimization, where centroids of the
depth-resolved spectra obtained by STFTs of fringes were calculated for each pixel corresponding
to the original image. Note that some of the above-mentioned software methods are only
systematic dispersion compensation (a static method correcting only device dispersion) or both
the systematic and sample dispersion compensations (a live method dynamically correcting
sample dispersion). In this manuscript, since the sample dispersion was found to be negligible,
we are solely targeting the systematic dispersion compensation, which can be pre-computed and
calibrated only once for an SD-OCT system.

In this paper, we proposed an alternative numerical method using time-frequency analysis
(TFA) technique with iterative optimization for the dispersion compensation in an SD-OCT
by using only one single mirror fringe. Specifically, STFT (one of the TFA techniques) was
performed on the resampled spectral interferogram of a mirror reflection, which resulted in a 2-D
depth-wavenumber plot (spatial-spectral domain). The purpose of the automated optimization
process is to minimize the wavenumber-dependent ridge variance in the spatial-spectral domain,



Research Article Vol. 1, No. 5 / 15 May 2022 / Optics Continuum 1119

including the variation of mirror peak position shifts in z-space after STFT and PSFs broadening,
both of which are caused by the dispersion. The proposed method is simple and robust, using
only one spectral interferogram, and can reduce the fringe chirping and the PSF broadening.
Image resolution improvement has been demonstrated when the dispersion was compensated for
measurements of the mirror and detailed biological micro-structures in the iridocorneal angle of
human cadaver eyes.

2. Theory

2.1. Dispersion in SD-OCT

The interference fringes, after background subtraction, are given by Eq. (1) [2], where k is the
angular wavenumber, I(k) is the spectral interferogram, ρ is the responsivity of the detector, S(k) is
the power spectrum of the light source, RR and RSn are reflectivities in reference and sample arms,
2∆zn · ng is the optical path difference at sample depth zn between the two arms which is scaled
by the group refractive index of the material ng at depth zn, ∆Φ(k) is the wavenumber-dependent
dispersion correction term.
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Since a1 is a positional shift term, typically it is sufficient to compensate the second and
third-order dispersion compensations with the phase correction term rewritten in Eq. (3) [18],
where a2 and a3 are the second and third-order dispersion compensation coefficients, k0 is the
central angular wavenumber. Once ∆Φ(k) is obtained, the Fourier transform of the dispersive
fringe multiplied with e−i∆Φ(k) produces a depth profile with improved axial resolution.

∆Φ(k) = −a2 · (k − k0)
2 − a3 · (k − k0)

3 (3)

2.2. Time-frequency analysis (TFA)

Time-frequency analyses (TFAs) are a group of techniques that represent both the time and
frequency domains simultaneously, which is particularly useful for detecting non-stationary
signals [22]. The most common form is the STFT. Briefly, STFT performs a size-fixed, localized
segmental windowed Fourier transform, repeatedly sliding through a signal over time, after
which it takes the summation of the series of windowed Fourier transforms. In practice, STFT of
a resampled spectral interferogram produces a two-dimensional graphic representation of the
energy distribution in the wavenumber and depth directions. While it is simple, window size
selection and overlap of windows are of extreme importance when STFT is applied to the spectral
interferogram because there is a trade-off between spatial and spectral resolutions in those two
directions. A narrower spectral window size results in good spectral resolution but poor spatial
resolution, while a longer spectral window size will improve the spatial resolution in z with poor
spectral resolution. Since we aimed to favor a better spatial resolution to ensure the accuracy in
peak position determination in z-space, we chose a large spectral window length with 1024 pixel
points. Details of evaluation in window size and overlaps chosen will be discussed later. Figure 1
illustrates how STFT works and can be potentially used for targeting the dispersion mismatch
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using a mirror measurement. The dispersion is exhibited by the sub-bandwidth reconstructed
PSFs’ shift and broadening, although the main cause of the latter comes from the reduced spectral
bandwidth by windowing.

Fig. 1. Illustration of how STFT works on a typical resampled spectral interferogram of a
mirror positioned at the sample arm. For illustration, (A) a complete fringe was partially
captured into 5 overlapping segments by a sliding window centered at k(i), where i= 1,2,. . . ,5.
(B) Each segmented fringe was then processed via conventional reconstructions into depth
profiles, highlighted with different colors corresponding to the window color in (A). With
unmatched dispersion in the system, the windowed bandwidth reconstructed PSFs are shifted
and broadened accordingly. (C) The central depths of these sub-bandwidth reconstructed
PSFs against different central k values of windows are plotted and linearly fitted, which
show a direct display of the dispersion. (D) To correct the dispersion mismatch, a method is
needed to align all of these shifted peaks to the correct depth position as well as to sharpen
the PSFs, as will be described in detail in Sec. 2.3.

2.3. Automatic dispersion compensation algorithm using TFA

To start the dispersion compensation term calculation, a resampled spectral interferogram, which
has an equal-spacing distribution of the wavenumbers among P= 2048 pixels, is input into an
iterative loop that optimizes a user-defined objective function Var(a2) as defined in Eq. (4).
First, STFT was performed on the spectral interferogram under optimization, which resulted
in a 2-D depth-wavenumber plot. The detailed MATLAB document for STFT usage can be
found at https://www.mathworks.com/help/signal/ref/stft.html. The ridge was then calculated by
finding the maximum depth value at each wavenumber being evaluated. The total number of
wavenumbers being evaluated (or the total number of local sliding windows) Keval in an STFT
process is determined by Eq. (5), where M is the length of the sliding window and L is the

https://www.mathworks.com/help/signal/ref/stft.html
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overlap length between any two consecutive sliding windows, and the ⌊ ⌋ symbols denote the
floor function. According to Eq. (5), Keval is proportional to the overlap length L but inversely
proportional to the sliding window size M. Therefore, one can have more wavenumbers being
evaluated by having much denser sliding windows or narrower windows, by consuming more
computing time. On the other hand, narrow windows have broadened PSFs, which could lead to
difficulty in ridge detections. The selection of window size and overlaps has an impact on the
algorithm’s output, and details will be discussed in Sec. 4.1. The k-dependent ridge variance,
caused by dispersion, was then minimized at the dispersion compensation coefficients a2, where
zi
a2 is the calculated depth at ith wavenumber, and z̄a2 is the average of depths across Keval equally

spaced wavenumbers.

Var(a2) =

∑︁Keval−1
i (zi

a2 − z̄a2 )
2

Keval − 1
(4)

Keval =
P − L
M − L

(5)

The automated system outputs the optimized dispersion compensation coefficients aOPT
2

and dispersion compensation term ∆ΦOPT (k), as illustrated in Fig. 2. ∆ΦOPT (k) is a P-pixel
vector stored in local and is used for future dispersion compensation during routine OCT image
reconstruction. Like the method described in Ref. [18], this procedure can be done for any
higher-order dispersion compensations. However, since our system manifests unnoticeable third
or higher-order dispersions, we calibrated the dispersion mismatch only at the second order. Note

Fig. 2. Flowchart of our proposed SD-OCT dispersion compensation algorithm. The
objective function Var(a2) denotes ridge variance, where a2 is a variable of second-order
dispersion compensation coefficient under optimization. STFT: short-time Fourier transform;
OPT: optimized.
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that to obtain the desired dispersion compensation vector using this algorithm, only one A-line
resampled spectral interferogram is needed.

3. Materials and methods

3.1. OCT system

A schematic diagram of the custom-built SD-OCT imaging system is shown in Fig. 3. The
broadband laser light source (SuperLum Ltd., Ireland) has a bandwidth of ∆λ = 165 nm at
3 dB spectrum width centered at 850 nm. The source light passing into a single-mode 50:50
fiber coupler (TW850R5A2; Thorlabs, Newton, NJ) is equally separated into two parts, directed
to the reference arm and sample arm, respectively. A pair of galvanometric scanning mirrors
(Cambridge Technology Inc., Bedford, MA) was implemented which enables simultaneously
horizontal (X-axis) and vertical (Y-axis) scanning of the iridocorneal angle of the eye. To match
the optical path lengths in the two arms, a motor-controlled mirror was used in the reference arm.
A dispersion compensator (LSM54DC1; Thorlabs, Newton, NJ) was used in the reference arm to
compensate for the objective lens which has an effective focal length of 54 mm (LSM54-850;
Thorlabs, Newton, NJ). The two lights interfere with each other at the coupler and are then
detected by a spectrometer (Cobra-S 800, Wasatch Photonics, NC), which comprises a diffraction
grating and a high-speed 12-bit complementary metal-oxide-semiconductor (CMOS) line-scan
camera.

Fig. 3. Schematic diagram of the SD-OCT system. An optical path length mismatch is
corrected by using a movable mirror motor-controlled in the reference arm. The mirror or
anterior segment of the cadaver eye placed on an eye holder is in the sample arm, as shown
in the close-up for the cadaver eye setup. SLD: superluminescent diode; S: spectrometer;
FC: fiber coupler; PC: polarization controller; C: collimator; DC: dispersion compensator;
MCM: motor-controlled mirror; M: mirror; YGM: Y-axis galvanometer mirror; XGM:
X-axis galvanometer mirror; OL: objective lens.
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The line-scan camera has P= 2048 pixels and runs at a 20 kHz rate. Processed images contain
1024×1000 pixels per frame, and display images at a rate of 10 frames per second. The measured
average axial resolution across 2-mm depths and theoretical lateral resolution are 2.7 µm and 8.2
µm in air, respectively. The OCT imaging system has a sensitivity of ∼110 dB and is capable of
imaging the eye to a depth of approximately 1.5 mm with ∼4.0 mW incident light power on the
sample.

3.2. Sample preparation

The human cadaver eyes for OCT imaging were obtained from San Diego Eye Bank within
24-hour postmortem. The study was in compliance with the Declaration of Helsinki. Since
we also use these eyes for experiments of femtosecond laser trabeculoctomy where the laser is
targeted on the TM region, unrelated structures are removed (living eyes do not encounter this
issue because eyes are vibrant and clear) [23,24]. Specifically, the eyes were carefully dissected
to keep the TM intact, while removing other components, such as the posterior segment, iris,
lens, ciliary body, and uveal tissues. The prepared eyes were then stored in the Optisol corneal
storage medium (Bausch and Lomb, Rochester, NY) and refrigerated at 4 °C. Before imaging,
the enucleated eye was mounted on a customized eye holder as illustrated in Fig. 3, perfused
with Dulbecco’s modified Eagle’s medium (DMEM) containing 5 µg/mL amphotericin, and 100
µg/mL streptomycin (MilliporeSigma, MA), and placed in an incubator (Sheldon Manufacturing,
Inc., Cornelius, OR) at 37 °C, 5% CO2, and 90% humidity for 30 min. The eye was then placed
on a movable mechanical stage with 5 degrees of freedom, i.e., X, Y, Z translations, rotation,
and tilting under the OCT imaging system. The OCT beam was focused on the limbus to
image the iridocorneal angle. The cornea surface was kept moist to prevent dehydration during
imaging. Note that cadaver tissue swelling will make the relationship between ex vivo and in
vivo dimensions uncertain.

3.3. Methods

To test the feasibility of the proposed dispersion compensation algorithm, a 19.6 mm, N-BAK1
glass manufactured block (LSM04DC; Thorlabs, Newton, NJ) was deliberately added into the
OCT beam, which introduces dispersion mismatch between the two arms. A mirror was placed
at the focus on the sample arm while the delay line was adjusted in the reference arm such that
the PSF was located at 200 µm from zero-delay. Ten spectral interferograms were taken at this
location and put into the algorithm independently to obtain the dispersion compensation vectors.
We tested the effectiveness and robustness of the algorithm by shifting PSFs at different locations
as well as applying the dispersion compensation term to human cadaver eye data. In addition,
to verify of the algorithm works with more dispersion, we added two same glass blocks as did
previously described, with the PSF located at 800 µm from zero-delay.

In performing STFT, a 1024-pixel-sized Hann window with 99% overlapping was applied to
the 2048-pixel sized spectral interferogram totaling 94 sliding spectral windows in this work.
The Simplex search method (“fminsearch” function with default stopping criteria in MATLAB
R2021b, MathWorks, Inc., Natick, MA) was used to minimize the ridge variance. Our dispersion
compensation algorithm as detailed in Sec. 2.3 takes only around 0.5 seconds in a MacBook Air
13-inch, 2017 (1.8 GHz Dual-Core Intel Core i5, 8 GB 1600 MHz DDR3).

4. Results

4.1. Selecting the overlap length and window size for STFT processing

Figure 4(A) and 4(B) show the effects of overlap ratio, which is defined by the ratio of overlap
length to the window size, on the dispersion compensated axial resolution and the averaged
compute time at an array of window sizes. Figure 4(C) demonstrates that a strong linear
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relationship exists between the averaged compute time and the total number of windows. To
evaluate the influence of window size on the dispersion compensated axial resolution and compute
time, we first fix the overlap ratio to 0.9, and the results are displayed in Fig. 4(D). More details
can be found in Appendix Table 2.

Fig. 4. (A) Axial resolution and (B) averaged compute time ∆t in milliseconds to generate
a dispersion compensation vector against a range of the overlap ratios, i.e., 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. Note that data are not available at some overlap ratios
for window size M=1024 (in red). (C) A coefficient of determination of 0.99888 indicates
that there is a strong correlation between the total number of windows Keval and ∆t. (D)
Obtained axial resolution (y-axis left) and ∆t (y-axis right) versus a series of window sizes.

Table 1. Statistics of the extracted a2 values from 10 mirror fringes with induced dispersion
block(s)

Num. disp.
block

Extracted a2 values (×10−11m2) Mean
(×10−11m2)

Standard
deviation

Coefficient of
variation

1 −4.098, −4.098, −4.098, −4.098, −4.098,
−4.144, −4.133, −4.121, −4.133, −4.098

−4.118 0.0187 −0.0046

2 −8.568, −8.522, −8.522, −8.522, −8.522,
−8.522, −8.475, −8.475, −8.475, −8.475

−8.5078 0.0315 −0.0037

In Fig. 5, we show a few examples to represent the impact of the window size on the spectral
and spatial distribution, a pair of competing factors in an STFT. The k-axis is the wavenumbers
being evaluated, which are consist of a series of the central k values of each sliding window. For
different combinations of window size and overlaps, the total number of the sliding windows and
the interval in k will change, resulting in a difference on the k-axis. For example, a large window
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has a larger starting k value on the k-axis than a smaller window does, and a larger overlap has a
finer k increment on the k-axis. Even so, either a large or small window will cover the spectrum
from one end but might miss some information from the other end of the spectrum. As expected,
significant loss of spectrum will only occur if large window sizes are used with small overlaps.

Fig. 5. Spectral and spatial distribution using STFT with various window sizes (A) M=1024,
(B) M=256, (C) M=64, and (D) M=16. Overlap ratios= 0.9. Red is the detected ridge of the
distribution. Failure of edge detection in D.

4.2. Dispersion compensation using mirror data

We plotted the energy maps before and after dispersion compensation in Fig. 6(A) and 6(B)
for comparison. Using the proposed method discussed in Sec. 2.3, we obtained the dispersion
compensation term in Fig. 6(C). It showed a quadratic curve with a larger amount in the lower
and higher frequency bands relative to the central working frequency, because we consider only
a2 optimization in our study. Higher-order dispersion can also be performed if the dispersion is
considerable. To avoid false ridge detections from the strong direct current component, spectral
interferograms of the mirror at the focus of the sample arm were collected while shifting the PSF
at 200 µm. Figure 6(D) shows the PSFs comparison before and after dispersion compensation.

To test the robustness of the proposed method, we repeated 10 independent spectral interfero-
grams on the algorithm as summarized in Table 1.

The dispersion compensation vector was found to be depth-independent and, once obtained,
can compensate for any other depths’ measurements. Figure 7 summarizes the sensitivity roll-off
performance of the imaging system over a range of 2 mm in air, corresponding to 1.5 mm in eye
tissues.
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Fig. 6. Spectral and spatial distributions (A) before and (B) after dispersion compensations.
The red lines centered on the energy distributions indicate the detected ridges. (C) is the
extracted dispersion using the proposed method, and (D) shows PSFs before and after
dispersion compensations.

4.3. Comparison to polynomial fitting method using Hilbert transform

The polynomial fitting method is done by performing a Fourier transform of the spectral interfer-
ogram, symmetrically gating the signal, inverse Fourier transformation, Hilbert transformation
to obtain the phase angle, unwrapping the phase, and finally fitting an n-order polynomial to
smooth the curve [16]. Figure 8(A) and 8(B) show the corrected PSFs using the polynomial
fitting method at a range of fitting orders and using our proposed method in two different amounts
of dispersion introduced into the OCT system. When one dispersion glass block was introduced,
the axial resolution using the polynomial fitting method can achieve as sharp as 2.4 µm. However,
the resolution was raised to 3.0 µm or larger when 2 dispersion glass blocks were added. Larger
sidelobes were observed using the polynomial fitting method when more dispersion existed. The
proposed method achieved approximately 2.6–2.7 µm in both cases. The extracted dispersion
curves between different methods are compared in one dispersion block (Fig. 8(C)) and two
dispersion blocks (Fig. 8(D)). Our quadratic, convex dispersion compensation can “linearize”
the raw, concave unwrapped phases. The dispersion curves extracted by the polynomial fitting
method are also convex, thus capable of correcting some dispersion. In addition, the extracted
dispersions using the polynomial fitting method are contingent on the fitting orders, especially
when a large amount of dispersion is induced.
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Fig. 7. Sensitivity roll-off performance of the calibrated SD-OCT system by the proposed
method, in which the reflectivity in dB is calculated by taking the 20·log of the amplitude of
Fourier transform of the spectral interferograms.

4.4. Imaging for iridocorneal angle in human cadaver eyes

The current gold standard for angle imaging associated with glaucoma is gonioscopy [25], which
can view the TM surface through the cornea but it’s extremely subjective and operator-dependent.
For the potential glaucoma treatment application, we implemented the OCT imaging system
specifically for the iridocorneal angle in human eyes. A 2mm×1.5 mm area in human cadaver
eyes was shown in Fig. 9. To remove the speckle noise, 10 sequential images at the same location
were taken to obtain an averaged image. The dispersion compensated images were sharper and
showed more clearly the anatomical details in the iridocorneal angle. For instance, SC, CCs,
and adjacent vessels were clearly visualized on the dispersion compensated images while barely
visible on uncorrected images. Note that the polynomial fitting method also represents quite
similar results to our proposed method therefore not repeated here.
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Fig. 8. PSF comparisons between the proposed method and the polynomial fitting method
with various fitting orders in an SD-OCT by introducing (A) one dispersion glass block, and
(B) two dispersion glass blocks. Note that the “proposed” PSF is superimposed on each of
the “polyfit” PSFs. All of them should locate at the same depth, but they are intentionally
shifted to avoid crowd. (C, D) Measured dispersion curves of both techniques (solid orange:
polynomial fitting methods; dash orange: proposed method) with the raw unwrapped phase
(blue, left y-axis) from the Hilbert transform are plotted for the two cases of dispersion,
respectively.
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Fig. 9. Typical averaged (A, B) horizontal and (C, D) vertical scanning OCT images of
the iridocorneal angle of human cadaver eyes with a field of view 2mm × 1.5mm, compared
between (A, C) without and (B, D) with the proposed dispersion compensation algorithm.
The beam probe was arranged approximately perpendicular to the limbus to ensure the best
visibility of TM, SC, and surrounding microstructures. SC, CCs, and adjacent vessels were
found on the dispersion compensated images while some of them were not visible or blurred
on the uncorrected images. Scale bar is 200 µm. AC: anterior chamber; TM: trabecular
meshwork; SC: Schlemm’s canal; CC: collector channel.
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5. Discussion

Optical dispersion remains an unneglectable issue in the development of an OCT system, especially
when using light sources with broad bandwidth, such as the 165 nm spectral bandwidth used in
our study. In addition, the dispersion is difficult to detect in the spectral interferogram domain. To
address these challenges, we developed a new TFA automated iterative framework that extracted
the dispersion compensation by optimizing the energy distribution of a dispersive spectrum
from a reflection of a mirror. The mirror data showed that dispersion induced discontinuity or
disturbances and k-dependent fluctuation of ridges in the spatial-spectral domain. This variance
was minimized via an iterative procedure together with STFT. An intuitive observation is that, if
we align the central depths of PSFs to eliminate the k-dependence in the spatial-spectral domain,
the FWHM of the resultant 1-D PSF can be greatly reduced after ridge variance minimization
(Fig. 1, Fig. 6(A) and 6(B)).

Selecting appropriate parameters (overlaps and window size) in an STFT affects the results
of dispersion compensation on both achieved axial resolution and compute time. Although the
overlap ratio has little effect on the axial resolution, it does matter when a large window is used.
This is because, for example, if an M=1024 window was used, some overlap was needed to
ensure a sufficient number of windows Keval was used. Otherwise, it will lead to the failure of
dispersion extraction, such as in the cases of overlap ratios ≤ 0.6 (Fig. 4(A) and 4(B), Appendix
Table 2). Non-overlap can be considered if median or smaller sizes of windows (M=512, 256,
128, 64, 32) are used, considering less compute time is required (Fig. 4(B), Appendix Table 2).
In addition, window size selection is closely related to the axial resolution and compute time.
The window size does not influence the axial resolution for most window sizes; but to some
degree when the windows are too small (M=16 and 8), the axial resolution dramatically worsens
(Fig. 4(D)). This is possibly due to the use of extremely narrow windows, which means higher
spectral resolution in the k-axis, causing the spatial resolution to greatly degrade, leading to
the failure of ridge detection (Fig. 5(D)). A smaller window also has a problem with a longer
compute time (Fig. 4(B), Appendix Table 2). To summarize, when using an STFT for dispersion
compensation in our algorithm, one could either select a larger window size (M=1024) with some
overlaps (0.7 or higher in our case), or select a median or median small size window (M=512,
256, 128, 64, 32) with no or small overlaps. The shaded area in Fig. 4(B) incorporates a broad
range of optional choices if 1 second of averaged compute time is considered to be acceptable.

Previous studies have attempted to use STFT and/or iterative optimization methods for
correcting the dispersion mismatch between the two arms [20,21]. By simply scanning a mirror at
the sample arm in this work, we presented an alternative method to compensate for the dispersion
in an SD-OCT. Unlike using cross-correlation to find the peak shifts [20], we used a simple
maximum search method to detect the locations of ridges, followed by an iterative optimization
procedure for ridge variation minimization. In addition, Ni et al.’s work [21] focused on the
optimization of the sample centroid image’s information entropy, as a further refinement of the
technique demonstrated by Wojtkowski et al. [18] and Yasuno et al. [19] towards optimizing an
image’s contrast and entropy, respectively. A simple and widely used polynomial fitting method
proposed by Cense et al. used Hilbert transform to extract the phase function ∆Φ. This method
worked pretty well when small dispersion was introduced in our experiment (Fig. 8(A)). However,
axial resolution degraded as the dispersion mismatch grew (Fig. 8(B)). Our method showed
consistent corrected PSFs in either situation (Fig. 8(A) and 8(B), Table 1).

In addition, our algorithm is simple, automatic, and robust for repeated measurements. The
dispersion compensation terms obtained from the 10 spectral interferograms of a mirror positioned
in the sample arm have only a −0.46% (−0.37%) coefficient of variation (Table 1). Another
advantage of our algorithm is that it provides a broad range of parameter selection for an STFT,
as discussed before. Lastly, it is convenient to use STFT to directly and dynamically visualize
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how the spectral non-linearity and dispersion mismatch represents at each step through the entire
OCT processing (in Appendix C).

Fig. 10. STFT of a mirror’s spectral interferogram with (A) background subtraction, (B)
normalization to reference spectrum, (C) resampling, (D) windowing, and (E) the proposed
dispersion compensation. The color bar indicates the amplitude of the STFT.

The resolution and imaging capability of the angle details were improved with the proposed
method using the STFT iterative technique. The dispersion compensation algorithm enabled
high-fidelity visualization of CCs adjacent to the SC, which was lost on the uncompensated
images. The imaging capability of these micro-structures is comparable to Kagemann et al.’s
work [8]. Furthermore, our horizontal and vertical imaging can assist to access angle details more
efficiently, which is crucial before and during glaucoma surgeries. For instance, in Fig. 9(B), the
horizontal scanning allows ophthalmologists to have a different view of the continuous structures
i.e., TM/SC/CCs connected with each other rather than only the cross-sectional images in the
vertical scanning in Fig. 9(D). This will be beneficial for the treatment planning of the surgical
volumes in our ongoing laser studies in human cadaver eyes [23,24] because laser drilling through
TM that is close to the opened SC/CCs might have a positive effect on intraocular pressure
reduction. Given the importance of better image visualization and characterization of the ocular
outflow structures in the iridocorneal angle for glaucoma surgery, future studies include further
image quality improvement of the TM/SC/CC areas, as well as studies of OCT image-guided
femtosecond laser trabeculoctomy in cadaver eyes for the treatment of glaucoma [23,24].

6. Conclusion

In conclusion, we presented a new numerical dispersion compensation algorithm for an SD-OCT,
for imaging the iridocorneal angle of human cadaver eyes. The dispersion compensation term
can be calculated with an automatic iterative procedure that minimizes the k-dependent ridge
variance via optimization of energy redistribution of a mirror’s spectral interferogram in the
spatial-spectral domain using STFT. Lastly, we demonstrate the feasibility of the proposed method
for dispersion compensation in an SD-OCT by evaluating both the mirror and angle imaging of
human cadaver eyes.
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Appendix

A. Parameters related to STFT processing

Table 2. aEffects of overlap ratio and window size on the dispersion compensated axial resolution
and compute time.

M= 1024 M= 512 M= 256

Overlap
ratio

Keval Axial res-
olution
(µm)

Compute
time (sec)

Keval Axial res-
olution
(µm)

Compute
time (sec)

Keval Axial res-
olution
(µm)

Compute
time (sec)

0.99 94 2.7 5.67 257 2.7 13.71 598 2.7 27.70

0.9 10 2.7 1.69 30 2.7 2.34 69 2.7 3.90

0.8 5 2.7 1.52 15 2.7 1.58 35 2.7 2.45

0.7 4 2.7 1.46 10 2.7 1.67 24 2.7 2.07

0.6 - N.A. - 8 2.7 1.40 18 2.7 2.10

0.5 - N.A. - 7 2.7 1.63 15 2.7 1.82

0.4 - N.A. - 5 2.7 1.48 12 2.7 1.62

0.3 - N.A. - 5 2.7 1.39 10 2.7 1.59

0.2 - N.A. - 4 2.7 1.56 9 2.7 1.46

0.1 - N.A. - 4 2.7 1.41 8 2.7 1.36

0 - N.A. - 4 2.7 1.55 8 2.7 1.52

M= 128 M= 64 M= 32

Overlap
ratio

Keval Axial res-
olution
(µm)

Compute
time (sec)

Keval Axial res-
olution
(µm)

Compute
time (sec)

Keval Axial res-
olution
(µm)

Compute
time (sec)

0.99 961 2.7 41.97 1985 2.7 83.28 2017 2.7 83.35

0.9 148 2.7 7.66 284 2.7 12.89 505 2.7 22.23

0.8 74 2.7 3.41 153 2.8 7.38 289 2.7 13.89

0.7 50 2.7 2.79 100 2.7 5.14 202 2.7 10.05

0.6 37 2.7 2.43 77 2.7 3.41 156 2.7 8.13

0.5 31 2.7 2.01 63 2.7 3.64 127 2.7 6.23

0.4 25 2.7 1.93 51 2.7 2.98 101 2.7 5.19

0.3 22 2.7 1.96 45 2.7 2.66 88 2.7 4.24

0.2 19 2.7 1.92 39 2.7 2.60 78 2.7 3.57

0.1 17 2.7 1.74 35 2.7 2.28 70 2.7 3.17

0 16 2.7 1.60 32 2.7 2.24 64 2.7 3.25

aThe axial resolution being evaluated uses the same mirror data that the PSF was located at 200 µm from zero-delay.
Compute time is defined as the total time that 10 independent resampled A-line spectral interferograms take through
the algorithm. Both the compute time and dispersion compensated axial resolutions are averaged by three repeated
measurements.

B. Deriving the measured and theoretical a2 values of the glass dispersion block

Assuming that each dispersion block includes the measured dispersion of a2, meas in the unit of
(×10−11m2) and the intrinsic dispersion of a2, inc, though small, exists within the system before
the introduction of any dispersion block. From Table 1, we have

a2, meas + a2, inc = −4.118 (6)
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2 · a2, meas + a2, inc = −8.5078 (7)

By solving the above equation set, we get

a2, meas = −4.3898 × 10−11m2 (8)

a2, inc = 0.2718 × 10−11m2 (9)

The ‘+’ and ‘-’ signs indicate that the dispersion tends to reside on the side of the sample
or reference arm, respectively. The above calculation assumes that the algorithm is capable of
extracting the dispersion perfectly in both, one, or two dispersion blocks. The other extreme
possibility is that there is no system intrinsic dispersion but just the algorithm’s limitations in
small dispersion detection. The averaged ratio of the second-order dispersion coefficients of the
two dispersion blocks to that of one dispersion block is measured to be −8.5078

−4.118 = 2.07 using
the proposed method, comparable to the theoretical value of 2. A possibility could be both the
minor system intrinsic dispersion and the algorithm’s imperfectability exist. A relatively low
dispersion extraction capability of our algorithm in both one and two dispersion blocks indeed
seems possible but it is excluded by the following discussions.

We attempt to analytically derive the theoretical a2 value for the completeness of this paper.
Since there is no theoretical formula for characterizing the wavelength-dependent refractive index,
derivation of a perfect theoretical a2 value is not achievable. Even though, an empirical Sellmeier
equation can be used to describe the relationship between the refractive index n and wavelength
λ for a particular transparent medium, where the Sellmeier coefficients for the N-BAK1 glass are
C1 = 1.12365662, C2 = 0.309276848, C3 = 0.881511957, B1 = 0.00644742752 µm2, B2 =
0.0222284402 µm2, B3 = 107.297751 µm2 (https://refractiveindex.info/).

n2 − 1 =
C1 · λ

2

λ2 − B1
+

C2 · λ
2

λ2 − B2
+

C3 · λ
2

λ2 − B3
(10)

From Eq. (1), we have
Φ = k · 2d =

w
c
· 2d · ng + ∆Φ (11)

Below also defines the wavenumber k and the group refractive index ng in a dispersive medium:

k =
wn
c

(12)

ng = n + w
∂n
∂w

(13)

Therefore, the phase function or dispersion compensation term is calculated by:

∆Φ = k · 2d −
2dw

c
·

(︃
n + w

∂n
∂w

)︃
= −

2dw2

c
∂n
∂w

(14)

where the speed of light in vacuum c = 299792458 m
s and the thickness of the glass dispersion

block d = 19.6 mm. Note that the wavenumber k is angular frequency dependent, or the angular
frequency w is wavenumber dependent, the refractive index n is wavelength dependent, and the
wavenumber and the wavelength are related by k = 2π

λ .
Comparing the second-order terms in Eq. (2) and Eq. (3) yields:

a2,theory = −
1
2
·
∂2∆Φ(k)
∂k2

|︁|︁|︁|︁
k0

(15)

Therefore, it is straightforward that a2,theory is achievable by calculating the ∂2∆Φ(k)
∂k2 term in

theory, considering the definition of the partial derivative as well as the chain rule, the product

https://refractiveindex.info/
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and/or quotient rule. The full expression of ∂2∆Φ(k)
∂k2 can be eventually evaluated as a function of n

and λ, and these are directly accessible from the Sellmeier equation.
However, it is unpractical to manually derive ∂2∆Φ(k)

∂k2 , and even undoable to get its full expression
in Mathematica online (Wolfram Mathematica, Wolfram Research, Inc., Champaign, IL) due to
its high compute complexity. The Mathematica can indeed compute the value of ∂2∆Φ(k)

∂k2

|︁|︁|︁
k0

and

related Mathematica code is provided in italics below, where k0 = 7581092.7 m−1 (central k
value after k-linearization during the OCT processing).

c1= 1.12365662;
c2= 0.309276848;
c3= 0.881511957;
b1= 0.00000000000000644742752;
b2= 0.0000000000000222284402;
b3= 0.000000000107297751;
c= 299792458;
d= 0.0196;
l[k_]:=2*Pi/k
n[k_]:=(1+ c1*l[k]ˆ2/(l[k]ˆ2-b1)+c2*l[k]ˆ2/(l[k]ˆ2-b2)+c3*l[k]ˆ2/(l[k]ˆ2-b3))ˆ(1/2)
w[k_]:=c*k/n[k]
Phi[k_]:=−2*d*(w[k])ˆ2*n’[k]/(c*w’[k])
D[Phi[k],{k,2}]/.k->7581092.7
By hitting “shift+ enter”, the above code directly gives us an output of −3.28396 × 10−10.

Therefore, the theoretical a2 value of the dispersion block is a2,theory = 1.64198 × 10−10 m2,
which is approximately 4 times compared to our absolute measured a2 value. This discrepancy is
not attributed to our algorithm’s limitation in extracting the dispersion. As we test, the a2,theory
value (or other values close to the a2 measured value) for the dispersion compensation broadens
PSFs and blurs the OCT images compared to that when the a2 measured value is applied. We
speculate that the assumption using the empirical fitting Sellmeier equation and the compute
precision of small numbers in the commercial software might be responsible for this discrepancy.

C. STFT analysis for an entire OCT processing workflow

The spatial-spectral plot provides direct access to the two-dimensional representation of the
step-by-step signal processing of a spectral interferogram of a single reflection of a mirror, which
illustrates how the spectral non-linearity and mismatch between the two arms changes over the
entire image processing. The energy distribution is gradually changing as shown in Fig. 10 A-E.
The energy distribution band is downward sloping and locally concentrated at some k numbers
after background subtraction (Fig. 10(A)), downward sloping and more uniformly distributed
after normalization (Fig. 10(B)). The chirping issue was largely solved by the resampling step,
but it still remained observable ridge variances (Fig. 10(C)). Therefore, our algorithm is applied
to the resampled spectral interferograms to further extract the underlying dispersion that causes
these ridge variances along the k-axis. To avoid unnecessary spectral leakage effects, a Hann
window was used to suppress the fringe signals at two ends (Fig. 10(D)). Little ridge variance
was observed after the proposed dispersion compensation (Fig. 10(E)).
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