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To 

The editor 

Research Policy 

Dear Professor, 

In the attached file, we have submitted a research paper titled “Unveiling the Environmental 

Efficiency Puzzle: Insights from Global Green Innovations” for the review process at the 

Research Policy journal. In this paper, we investigate the role of green innovations in 

achieving SDGs from the environmental efficiency perspective. We analyse green patents and 

other related green policy data in 42 countries from 2000 to 2020. To measure the green 

innovations efficiency and environmental efficiency, a network bias-corrected data 

envelopment analysis and clustering analysis are applied. Our findings reveal that a majority 

of studied countries have not experienced substantial progress in environmental efficiency, 

indicating a limited utilization of green innovations towards the attainment of sustainable 

development goals (SDGs) related to the environment. Consequently, we have identified the 

underlying factors contributing to this low level of environmental efficiency and have 

formulated policy recommendations and benchmarking insights that can assist policymakers 

in formulating customized strategies for promoting green development trajectories. The 

implications of our research are significant for policymakers and stakeholders involved in the 

management of green innovation systems. Our study is in line with the thematic scope and 

focal point of the Research Policy journal. 

We confirm that we have not submitted this manuscript for possible publication anywhere else 

nor it has been submitted as a preprint on any servers. We also confirm that we have no conflict 

of interest. 

Thank you for considering our manuscript for publication in your esteemed journal. 

Sincerely, 

Dr. Ibrahim Alnafrah 

E-mail: ibrahimnafrah@gmail.com 
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Unveiling the Environmental Efficiency Puzzle: Insights from Global Green Innovations 

Abstract 

The latest surge of global uncertainty and disruptions in global supply networks put policymakers under pressure 

to emprise green innovations as a vital tool to address environmental concerns. However, producing green 

innovations doesn’t always help in achieving environment-related sustainable development goals. 

Therefore, in this study, we endeavour to investigate to what extent green innovations are efficient in improving 

environmental efficiency. To this end, a network bias-corrected data envelopment analysis and clustering analysis 

is applied. The data used in this study covers 42 countries from different regions, spanning from 2000 to 2020.  

The results reveal that most countries have not made major advancements in environmental efficiency signifying 

the low level of green innovations utilization to achieve environment-related sustainable development goals 

(SDGs). Additionally, the results demonstrate a U efficiency curve for inputs-oriented green innovations 

efficiency over time, indicating that the initial stages of green innovations production are associated with a 

decreased return. However, over time, the efficiency exhibits an upward trend. The benchmarking analysis reveals 

that South American and European Union nations set the bar for other countries in terms of efficiently leveraging 

green innovations to achieve SDGs. 

Our findings also suggest that environmental efficiency is more dependent on green-supporting policies such as 

green energy production and green taxes. As a result, we conclude that achieving environmental SDGs while 

utilizing green innovations does not always result in the development of other SDGs. Therefore, policymakers 

need to prioritize pursuing a green developmental approach and supporting policies to achieve environment-

related SDGs and other SDGs. 

Key words: green innovations, sustainable development, network DEA, environmental efficiency, SDG-7, 

SDG-13. 

1. Introduction 

Environmental sustainability has emerged as a critical concern in recent times, given the increasing global 

environmental challenges such as ecosystem degradation, natural disasters, and climate change (Thomas, 2023). 

However, in light of the global instability, uncertainty, and disruptions in global supply chains, policymakers 

worldwide are facing pressure to shift the structure of developmental priorities at the expense of environmental 

SDGs (Adediran & Swaray, 2023; Pata et al., 2023). Therefore, it becomes imperative to devise policy 

mechanisms that enable policymakers to efficiently manage the limited resources available to achieve SDGs in 

response to the ongoing changes. 

In doing so, green innovations, which refer to the development and application of new technologies, aimed at 

reducing environmental impacts, have been widely promoted as a means to solve this dilemma and achieve 

environmental sustainability. However, the efficiency of green innovations in improving environmental 

sustainability remains a subject of debate in the literature (Du & Li, 2019; Sun et al., 2019).   

Title Page with all author details (names, universities and
affiliations)

Click here to view linked References

https://www.editorialmanager.com/respol/viewRCResults.aspx?pdf=1&docID=34512&rev=0&fileID=324316&msid=eb3ddc89-dd78-4231-befc-fed7fd75eb22
https://www.editorialmanager.com/respol/viewRCResults.aspx?pdf=1&docID=34512&rev=0&fileID=324316&msid=eb3ddc89-dd78-4231-befc-fed7fd75eb22


2 
 

Important contributions to this discussion have been made by several authors. Most of these contributions 

emphasize the vital role of green innovations in achieving SDGs. Previous studies argue that natural resource 

consumption efficiency is relatively higher when using green innovations (Miao et al., 2017; X. Zhao et al., 2022). 

Other scholars suggest that green innovations significantly reduce CO2 emissions per unit of output while holding 

current technologies constant (Shahzad et al., 2022; W. Zhang et al., 2017). Accordingly, green innovations 

contribute to environmental efficiency by providing alternative ways of utilizing and implementing existing 

technology (Du & Li, 2019; Kunapatarawong & Martínez-Ros, 2016). On the other hand, some scholars argue 

that, in contrast to environmental legislation, an increase in regional green innovation efficiency is found to be 

entirely dependent on technical advancement (Luo & Zhang, 2021). This implies that green innovations alone are 

not enough to ensure achieving SDGs. The way countries utilize green innovations and the policies that 

accompany them are prerequisites for environmental efficiency to be sustained.  

According to our knowledge, studies that tried to measure green innovations efficiency and environmental 

efficiency at the international level are still scarce (Lozano, 2015; Moutinho et al., 2017; P. Zhou et al., 2010), 

and most related studies in the field measure environmental efficiency at the microeconomic level (Abid et al., 

2022; Gao & Li, 2021; Y. Wang & Yang, 2021). Besides, few studies that have tried to measure environmental 

efficiency are mainly focusing on one main environment-related output, specifically carbon dioxide emissions 

(Cucchiella et al., 2018; P. Xie & Jamaani, 2022) overlooking other important factors such as environment-related 

policy, research and development efforts, and clean energy practices. 

Therefore, the questions of how green innovations can be produced efficiently and how these innovations can be 

used to boost the achievement of environment-related SDGs require further exploration. Taking this into 

consideration, this study endeavours to answer the following research questions: 

RQ.1: Are countries producing green innovations efficiently? 

RQ.2: What role do green innovations play in achieving the SDGs, in particular SDG-7 and SDG-13? 

RQ.3: What factors contribute to the environmental efficiency’s heterogeneity across different countries? 

This study is motivated by the lack of empirical evidence on the efficiency of green innovations in improving 

environmental sustainability. By using network bias-corrected DEA, the study attempts to solve the issue of bias 

in previous studies and provide a more accurate assessment of the green innovations efficiency and their role in 

improving sustainable environmental efficiency.  

This study contributes to the growing literature on the relationship between green innovations and environmental 

sustainability using a robust methodological approach and a comprehensive dataset. Moreover, to deal with 

climate change using green innovations, this work contributes to the exploration of environmental efficiency 

heterogeneity across countries to identify the best practices and strategies that can be adopted to achieve this goal. 

The results of this study provide policymakers with a tool to identify the source of failure in achieving 

environment-related SDGs. Accordingly, this study adds to the body of literature in the following aspects. First, 

a new environmental efficiency measurement framework is provided where the process of achieving 

environmental efficiency is divided into two sub-processes. Thus, policymakers can identify the weaknesses in 

their green path. Second, a robust efficiency measurement technique is applied to overcome the shortcomings of 
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the previous studies in terms of bias-correction. Third, clustering analysis is carried out to investigate the 

heterogeneity among countries, and some tailored policies can be provided by following the best practices of the 

clustered countries. 

The rest of the paper is structured as follows: Section 2 reviews previous studies on environmental efficiency 

measurement at different analytical levels. Section 3 explains the used data and applied techniques. In Section 4, 

results are reported and discussed. Section 5 concludes, and policy implications are provided. 

2. Literature review 

The issue of green innovation has received huge consideration when it comes to reducing the adverse effect of 

economic activities on the natural environment. By creating innovative ways of production, companies have 

reduced the consumption of resources, waste generation, and emissions, which has led to more sustainable and 

efficient use of natural resources (Del Giudice & Della Peruta, 2016; Dubey et al., 2015; Lewis et al., 2014; Singh 

& El-Kassar, 2019; Hambrick & Quigley

Governments across the globe have made commitments to safeguard ecosystems, champion equality, and 

prioritize sustainable development. They also understand the intertwined nature of these goals in the quest to 

enhance human well-being (Coscieme et al., 2021). However, this interplay between objectives has given rise to 

considerable difficulties. Notably, there exist both synergies and conflicts among and within the goals. These 

conflicts have complicated the pursuit of the SDGs and have presented an obstacle to the execution of cohesive 

policy solutions for sustainable development. This situation augments the likelihood that the endeavor to equate 

interests and priorities may fall short (Scherer et al., 2018; Y. Lu et al., 2015; Pham-Truffert et al., 2020). This 

has led to the problem of policy coherence in Achieving the SDGs(Coscieme et al., 2021). However, some efforts 

are ongoing to tackle the problem of policy coherence(Janetschek et al., 2020; Ronzon & Sanjuán, 2020; Petersen 

& Mortensen, 2017). 

Green technology innovation is significant to achieving energy efficiency and overall SDGs. For instance, using 

more sustainable technologies, practices, and products helps achieve climate action, resource efficiency 

improvement, and biodiversity and ecosystem protection. The SDGs have 5 interconnected goals that directly 

relate to the environment(UNDP, 2021), and green innovation can contribute to achieving the SDGs in several 

ways (Ullah et al., 2021). However, this research will focus on green innovation’s role in clean energy (SDG 7) 

and climate change or greenhouse gas emissions (SDG 13).  

Green innovations can help improve energy efficiency (Banerjee & Murshed, 2020) by reducing the amount of 

energy consumed in production processes. According to Wang et al. (2021), promoting energy efficiency avoids 

excessive energy consumption,  and in terms of output, it reduces extreme environmental damage. Several studies 

have investigated ways to improve energy efficiency (Xie et al., 2014; Xiong et al., 2019; Zhu et al., 2019; Yu, 

2020; Yu, 2020; Xiong et al., 2019; Zhu et al., 2019; Fisher-Vanden et al., 2006; Baccarelli et al. 2016; Naranjo 

et al., 2019; Fisher-Vanden et al. 2006; Hellsmark et al., 2016; Miao et al., 2018). Some of these studies measured 

green innovation's impact on energy efficiency in industries across countries (Xiong et al., 2019; Zhu et al., 2019; 

Yu, 2020). For example, Xiong et al. (2019) applied the slacks-based measure model, which incorporates 

undesirable output, to assess industrial energy efficiency. They conducted this evaluation at both provincial and 



4 
 

sectoral levels in China over seven years, from 2010 to 2016. In addition, Zhu et al. (2019) utilized an innovative 

method that integrates measures of industrial structure adjustment, super-efficiency slacks-based methods with 

undesirable outputs, and panel regression models. They used this comprehensive approach to investigate the 

influence of adjustments in industrial structure on the efficiency of green development. Green innovation 

improves total-factor energy efficiency by employing the environmental Malmquist index, grounded in the SBM-

DEA (slack-based measure data envelopment analysis) model (Xie et al., 2014). Meanwhile, Yu (2020) used the 

modified Super-SBM method to measure China’s total-factor energy efficiency, employing the dynamic spatial 

panel model (DSPM) to validate the impact of industrial structure and technological innovation on total factor 

energy efficiency. He found no significant correlation between these two factors. Moreover, several studies have 

suggested that shifts in industrial structure are what improve energy efficiency (Xiong et al., 2019; Zhu et al., 

2019; Yu, 2020), rather than technological advancements, as some other research might imply.  

Furthermore, increases in relative energy prices, research and development expenditures, and ownership reform 

can all contribute to improvements in energy efficiency (Fisher-Vanden et al., 2006), and significant data stream 

mobile computing combines mobile networking, cloud computing, and big data processing (Baccarelli et al. 2016) 

are also factors that can improve energy efficiency. Fisher-Vanden et al. (2006) used a uniquely comprehensive 

data set detailing Chinese firm characteristics and technological innovation activities to pinpoint key drivers of 

rising energy productivity within China's industrial sector. While many of the papers reviewed had used CO2 as 

the measure of energy efficiency, it is a possibility that green innovation impact other environmental-related policy 

measures differently. This is why it is important to investigate the impact of green innovations on other 

environmental-related policy measures (i.e., environmental taxes and other renewable energy efforts), which is 

the focus of this research.  

Green innovations help reduce greenhouse gas emissions and other known pollutants. This is by advancing 

production processes and scaling down the generated waste. More studies have investigated the relationships 

between green innovation and emission reduction (Xu et al., 2021; Zhang et al., 2017; Huang et al., 2021; Zhao 

et al., 2023; Wang & Wei, 2020; Bogusz & Howlett, 2008; Roos et al., 2012; Kalkuhl et al., 2012; Voigt et al., 

2014; Bogusz & Howlett, 2008; Roos et al., 2012). Many of these studies have demonstrated that green and 

environmental innovations reduce carbon dioxide emissions (Zhao et al., 2023; Zhang et al., 2017; Huang et al., 

2021; Yii & Geetha, 2017). However, a small number of these studies suggest that green innovation or 

technological advancement may potentially exacerbate CO2 emissions (Xu et al., 2021; Wang & Wei, 2020). 

Zhang et al. (2017) adopted the system generalized method of moments (SGMM) technique, while Zhao et al. 

(2023) two-way fixed effects model and interaction model. On the other hand, Wang & Wei (2020) applied the 

panel smooth transition regression technique to data from OECD countries and emerging economies.Meanwhile, 

Xu et al. (2021) utilized a two-way fixed effect model, the instrumental variable method, and a spatial econometric 

model on data from 218 prefecture-level cities in China. Notably,  Wang & Wei (2020) pointed out the potential 

for emerging economies under stringent environmental regulations to fall into a serious 'green paradox.' This 

paradox refers to a scenario where efforts to reduce emissions prematurely could inadvertently stimulate an 

increase in emissions in the short term and harm economic development. 

Several other studies have also investigated the effect of technological advancement and environmental regulation 

on CO2 emissions, significantly as it varies across countries (Bogusz & Howlett, 2008; Roos et al., 2012; Kalkuhl 
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et al., 2012; Voigt et al., 2014). Bogusz & Howlett (2008), Roos et al. (2012), Kalkuhl et al. (2012), and Voigt et 

al. (2014) have shown the role of green innovation policies (such as taxes on emissions, increased share of 

renewables, and improvement of energy efficiency, subsidies, quotas, energy intensity trends, and drivers)  play 

in the reduction of greenhouse gas emissions. For example, Kalkuhl et al. (2012) utilized an intertemporal general 

equilibrium model to demonstrate that even 'small' market imperfections could trigger several decades of 

dominance by an incumbent energy technology over a dynamically more efficient competitor, assuming that the 

technologies are perfect substitutes. Meanwhile, Voigt et al. (2014) employed the logarithmic mean Divisia index 

decomposition to (1) attribute efficiency changes to either changes in technology or alterations in the structure of 

the economy, (2) examine trends in global energy intensity between 1995 and 2007, and (3) emphasize sectoral 

and regional disparities.  

Many studies in the literature have studied the impact of environmental-related policies on overall environmental 

efficiency using the  Data Envelopment Analysis (DEA) technique (Moutinho et al., 2017; Lozano, 2015; 

Cucchiella et al., 2018; Biresselioglu et al., 2018; Tsaples et al., 2019; Kwon et al., 2017; Song et al., 2012; Wu 

et al., 2014; Chang et al., 2014; Zhou et al., 2019; Xie et al., 2017; Wang & Feng, 2015). For instance, an output-

oriented model with two specifications (Variable and Constant Returns to Scale) was employed by Moutinho et 

al. (2017), incorporating inputs such as labour and capital productivity, fossil energy weight, and the GDP's 

renewable energy share, with GDP per GHG (greenhouse gases) emissions as the output. They found that taxes 

on emissions have a substantial impact on eco-efficiency scores, and there exist notable discrepancies among 

European countries. Wu et al. (2014) show that firms use a minimum output improvement strategy to improve 

their environmental efficiency and reduce their negative impact on the environment. The study highlights the 

importance of considering output competition between Decision Making Units (DMUs) when evaluating their 

environmental efficiency, which can help researchers develop more accurate and reliable models for assessing 

environmental efficiency. This paper demonstrated that it is essential to consider the heterogeneity of industries 

in proposing emission reduction strategies. Given the divergent thought on the impact of green innovation and 

environmental efficiency, it is instructive to investigate its role in achieving clean energy and greenhouse gas 

emission. 

Many of the studies reviewed have not adequately addressed the measurement challenges in environmental 

efficiency literature. For example, most studies only focused on one environmental performance indicator (i.e., 

CO2 emissions or energy consumption)(Moutinho et al., 2017; Cucchiella et al., 2018; Tsaples et al., 2019)  but 

ignored the potentials impacts of other environmental performance indicators (such as water use or waste 

management, etc.). Using a single environmental performance indicator in assessing environmental efficiency 

may lead to inadequate assessment. Also, so many studies used inadequate methods to measure environmental 

efficiency. For instance, some studies like Afrinaldi (2022) and Chen & Delmas (2012) used simple ratios without 

considering other external factors that have the potentials to influence environmental efficiency.   

3. Data and methodology 

3.1.  Data 
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This study includes data from 42 countries across various regions, covering the period from 2000 to 2020. The 

list of countries analyzed can be found in Appendix A, specifically in table A. 1. The selection of countries for 

the sample was based on two criteria. The first criterion, as suggested by (Cooper et al., 2006), required the number 

of countries to be greater than the combined inputs and outputs in order to prevent inflated efficiency evaluations. 

Secondly, we deliberately chose countries from diverse geographical, economic, and social contexts to enable 

meaningful comparisons and yield policy insights applicable to various country groups. 

Regarding the variables used in this study, different sets of variables were selected to measure different types of 

environmental efficiency. The list of used variables and their descriptive statistics are reported in Appendix A, 

Table A. 2. The descriptive statistics show heterogeneity among countries in terms of the SDG-13 achievement 

process, renewable energy productivity, and environment-related taxes. This provides more motivation to explore 

how this environment-related heterogeneity can affect environmental efficiency in different contexts. 

The process of variables selection is drawn from the conceptual framework of how countries may achieve high 

levels of environmental efficiency through different channels and processes. Accordingly, variables are divided 

into two groups. First, the inputs group, where some variables such as research and development expenditures and 

the published scientific articles in environmental science are selected as proxies for the capabilities of producing 

green innovations. Other variables, such as environment-related taxes and renewable energy productivity, are 

selected as proxies for government policy and practices toward achieving the environment-related SDGs. Second, 

is the outputs group, where variables such as alive environment patents are selected to represent the green 

innovations production process. Moreover, other variables such as SDG-7, SDG-13, and the overall SDG index 

are selected as the ultimate goals of governments to enhance the environmental aspects of sustainability. 

3.2.  Methodology 

In this study, we utilize the nonparametric programming model (CCR) developed by (Charnes et al., 1978) and 

the dual convex model (BCC) introduced by (Banker et al., 1984) for the assessment of environmental efficiency. 

Data envelopment analysis (DEA) is employed to compute relative efficiency scores for countries within different 

regions. Our analysis concentrates on measuring both technical and scale efficiency in relation to the efficient 

frontiers. 

The network DEA technique was chosen due to its nonparametric nature, which does not require the assumption 

of relative weights or specific distribution assumptions for inputs and outputs. Compared to parametric models, 

this method is less restrictive and offers greater flexibility. Furthermore, network DEA is founded on the principle 

of Pareto Optimality (Charnes et al., 1985), when another country or a group of countries can achieve the same 

results with fewer resources than the country in question, that country is considered inefficient. 

From a mathematical perspective, the DEA method comprises two primary models based on the type of returns 

to scale. The first model, known as Constant Return to Scale (CRS), assumes that outputs increase proportionally 

to inputs, indicating optimal scale operation for all decision-making units (DMUs). In contrast, the second model, 

Variable Return to Scale (VRS), allows for three different directions of returns: increased, decreased, or constant. 
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Nevertheless, the existing DEA methods overlook the possibility of breaking down decision-making units 

(DMUs) into sub-systems, treating them as a single entity. This study employs network DEA to address this 

limitation and account for the diverse performance levels among various sub-systems within the DMU, as 

suggested by (Färe & Grosskopf, 2000; C. H. Wang et al., 1997). 

To this end, the environmental efficiency measurement process is divided into two sub-processes as shown in 

figure 1. These two processes are: 

 Green knowledge and innovations production (GIE): we start with measuring the efficiency of the 

environment-related knowledge and green innovations production process. The universities, research and 

development organizations, and private sector companies constitute the three main participants in this 

process. The inputs of this process are the research and development expenditures as a percentage of 

GDP, and the number of scientific articles published in environmental science. These inputs should be 

used efficiently to produce environmental patents as a proxy for green innovations. Otherwise, the system 

is considered inefficient in producing green innovations that are supposed to play a vital role in achieving 

the environment-related SDGs. 

 Environmental efficiency (EN): at this stage, we measure the efficiency of green innovations in 

achieving the environment-related SDGs. Three aspects of environmental efficiency are taken into 

consideration. First, technological knowledge is represented by green innovations. Second, environment-

related government policy is represented by environment-related taxes. Third, environmental actions are 

represented by renewable energy production. As shown in Figure 1, green innovations are outputs of the 

first process, but at the same time, they are used as inputs in the second process. Thus, hypothetically, 

the performance of the green innovations production efficiency should play a role in improving the 

performance of environmental efficiency. 

Accordingly, the efficiency of the general environmental sustainability is measured using inputs and outputs from 

both the abovementioned processes. Figure 1 shows the third block, where technological knowledge, green 

innovations, environment-related policy, and renewable energy are selected as inputs to achieve the overall SDGs. 

Thus, we can answer the main research question of how green innovations can improve environmental 

sustainability performance. 
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Fig. 1. Environmental efficiency measurement system 

The methodology comprises two steps:  

A. Model orientation selection:  inputs and outputs were chosen based on a comprehensive examination 

of prior empirical studies that utilized various DEA methods to gauge efficiency. As previous studies 

suggest, inputs-oriented efficiency measurement is preferable since policymakers can control inputs 

more than outputs (Emrouznejad & Yang, 2018). Therefore, the input-oriented model is selected to 

measure the efficiency of environmental sustainability. In addition, focusing on the input side of the 

environmental sustainability achievement process is vital to improve the required national innovation 

and technological capabilities along with government-related policy and renewable energy capacities.  

In the context of static datasets, it is typically necessary to conduct a correlation matrix analysis to establish a 

meaningful correlation between inputs and outputs, thereby validating the integrity of our model (Golany & Roll, 

1989; W.-M. Lu et al., 2014). Nevertheless, in the present study where panel datasets are utilized and the DEA 

method is applied, this assumption has been relaxed. 

B. Returns selection: to determine the type of returns to scale to incorporate into our model, we draw on 

the study conducted by (Kneip et al., 2011) to identify the returns to scale. We employ an RTS test for 

all three processes, with the null hypothesis being that the suitable returns to scale are constant returns to 

scale. The outcomes of this test are presented in Appendix A, specifically in Table A.3.  

The findings presented in Table A.3 indicate that constant returns to scale (CRS) is the suitable approach for all 

processes. The p-values for all processes support the acceptance of the null hypothesis at a significance level of α 
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= 1%. This observation is significant as it suggests that the results of the RTS-test align with the operational 

structure of the studied countries (DMUs), which are expected to operate at optimal scales. Thus, the efficiency 

scores obtained can be used to rank the countries in terms of their efficiency, and the results can be used to identify 

best practices and benchmarking opportunities. Furthermore, the constant returns to scale approach primarily 

evaluates scale efficiency, but it does not offer insights into the stage or direction of innovation activities' returns. 

It is important to highlight that the countries examined in this research function under varying institutional 

structures with incomplete competition. Therefore, the study will employ the CRS methodology to assess 

comparative environmental efficiency. 

3.2.1. Efficiency measurement model 

We have three processes, each involving multiple countries. In the first process, each country has 𝑚1 inputs 

denoted as 𝑋𝑖1𝑗 (where 𝑖1ranges from 1 to  𝑚1), and 𝑠1 outputs denoted as 𝑌𝑟1𝑗 ( where 𝑟1ranges from 1 to  𝑠1), 

which pertain to knowledge and green innovations’ production (GIE). Similarly, in the second process, each 

country has 𝑚1 inputs denoted as 𝑋𝑖1𝑗 (where 𝑖1ranges from 1 to 𝑚1), and 𝑠1 outputs denoted as 𝑌𝑟1𝑗 (where 

𝑟1 ranges from 1 to 𝑠1) for the knowledge and green innovations production (GIE), 𝑚2 inputs 𝑋𝑖2𝑗 (𝑖2 =

1, … . , 𝑚2) and 𝑠2 outputs 𝑌𝑟2𝑗 (𝑟2 = 1, … . , 𝑠2), which relate to environmental efficiency (EN). Lastly, in the 

third process, each country has 𝑚3 inputs denoted as 𝑋𝑖3𝑗 (where 𝑖3𝑟anges from 1 to 𝑚3), and 𝑠3 outputs denoted 

as 𝑌𝑟3𝑗 (where 𝑟3 ranges from 1 to 𝑠3) which pertain to general environmental sustainability (GE). Furthermore, 

a set of P intermediate values, denoted as 𝑍𝑝𝑗 (where 𝑝 ranges from 1 to 𝑞), serve as the connection between the 

(GIE), (EN), and (GE). We represent unknown positive values above ε (a non-Archimedean number) as 𝑢𝑟1, 𝑢𝑟2, 

𝑢𝑟3, 𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3  and 𝑤𝑝. 

Accordingly, the efficiency score is as follows: 

𝐸𝑗 =
∑ 𝑢𝑟1𝑌

𝑟1𝑗
𝑠1

𝑟1=1
+ ∑ 𝑢𝑟2𝑌

𝑟2𝑗
𝑠2

𝑟2=1
+∑ 𝑢𝑟3𝑌

𝑟3𝑗
𝑠3

𝑟1=1
 ∑ 𝑤𝑝𝑧𝑝𝑗

𝑞
𝑝=1

∑ 𝑣𝑖1𝑥𝑖1𝑗
𝑚1

𝑖1=1
+ ∑ 𝑣𝑖2𝑥𝑖2𝑗

𝑚2

𝑖2=1
+ ∑ 𝑣𝑖3𝑥𝑖3𝑗

𝑚3

𝑖3=1
∑ 𝑤𝑝𝑧𝑝𝑗

𝑞
𝑝=1

           (Eq.1) 

𝐸𝑗 represents the proportion of the combined weighted outputs to the combined weighted inputs of the two 

processes. The total efficiency denoted as 𝐸𝑗, encompasses three separate efficiencies: 𝐸𝑗
1 for the GIE efficiency 

score, 𝐸𝑗
2 for the EN efficiency score, and 𝐸𝑗

3 for the GE efficiency score.  

According to (Kao & Hwang, 2008), the results obtained from the initial process, known as GIE, are expected to 

serve as inputs for the subsequent process, referred to as EN. Consequently, the CRS model (Charnes et al., 1978) 

can be employed to compute the overall efficiency (GE) of a specific DMU (𝑗0) using the following formula: 

𝐸𝑗0
= 𝑚𝑎𝑥

∑ 𝑢𝑟1𝑌
𝑟1𝑗0

𝑠1

𝑟1=1
+ ∑ 𝑢𝑟2𝑌

𝑟2𝑗0

𝑠2

𝑟2=1
+ ∑ 𝑢𝑟3𝑌

𝑟3𝑗0

𝑠3

𝑟3=1
+ ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1

∑ 𝑣𝑖1𝑥𝑖1𝑗0
𝑚1

𝑖1=1
+ ∑ 𝑣𝑖2𝑥𝑖2𝑗0

𝑚2

𝑖2=1
+ ∑ 𝑣𝑖3𝑥𝑖3𝑗0

𝑚3

𝑖3=1
+∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1

  (Eq. 2) 

s.t.        
∑ 𝑢𝑟1𝑌

𝑟1𝑗
𝑠1

𝑟1=1
+ ∑ 𝑢𝑟2𝑌

𝑟2𝑗
𝑠2

𝑟2=1
+∑ 𝑢𝑟3𝑌

𝑟3𝑗
𝑠3

𝑟3=1
+ ∑ 𝑤𝑝𝑧𝑝𝑗

𝑞
𝑝=1

∑ 𝑣𝑖1𝑥𝑖1𝑗
𝑚1

𝑖1=1
+ ∑ 𝑣𝑖2𝑥𝑖2𝑗

𝑚2

𝑖2=1
+ ∑ 𝑣𝑖3𝑥𝑖3𝑗

𝑚3

𝑖3=1
+∑ 𝑤𝑝𝑧𝑝𝑗

𝑞
𝑝=1

 ≤ 1  

∑ 𝑢𝑟1𝑌
𝑟1𝑗

𝑠1

𝑟1=1
+ ∑ 𝑤𝑝𝑧𝑝𝑗

𝑞
𝑝=1

∑ 𝑣𝑖1𝑥𝑖1𝑗
𝑚1

𝑖1=1

 ≤ 1   
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∑ 𝑢𝑟2𝑌
𝑟2𝑗

𝑠2

𝑟2=1

∑ 𝑣𝑖2𝑥𝑖2𝑗
𝑚2

𝑖2=1
+ ∑ 𝑤𝑝𝑧𝑝𝑗

𝑞
𝑝=1

 ≤ 1   

∑ 𝑢𝑟3
𝑌𝑟3𝑗

𝑠3

𝑟3=1

∑ 𝑣𝑖3
𝑥𝑖3𝑗

𝑚3

𝑖3=1 + ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1

 ≤ 1 

where 𝑢𝑟1, 𝑢𝑟2, 𝑢𝑟3, 𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3  and 𝑤𝑝 ≥ ε; 𝑗 = 1, 2, … , 𝑛 

To solve the conversion of the previous model into a linear program model, the model can formed as follows: 

𝐸𝑗0
= max ∑ 𝑢𝑟1

𝑌𝑟1𝑗0

𝑠1

𝑟1=1 + ∑ 𝑢𝑟2
𝑌𝑟2𝑗0

𝑠2

𝑟2=1 +  ∑ 𝑢𝑟3
𝑌𝑟3𝑗0

𝑠3

𝑟3=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1          (Eq. 3)  

s.t.    ∑ 𝑣𝑖1
𝑥𝑖1𝑗0

𝑚1

𝑖1=1 +  ∑ 𝑣𝑖2
𝑥𝑖2𝑗0

𝑚2

𝑖2=1 +  ∑ 𝑣𝑖3
𝑥𝑖3𝑗0

𝑚3

𝑖3=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 = 1   

(∑ 𝑢𝑟1
𝑌𝑟1𝑗

𝑠1

𝑟1=1 + ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 ) − ∑ 𝑣𝑖1

𝑥𝑖1𝑗
𝑚1

𝑖1=1  ≤ 0   

∑ 𝑢𝑟2
𝑌𝑟2𝑗

𝑠2

𝑟2=1 − (∑ 𝑣𝑖2
𝑥𝑖2𝑗

𝑚2

𝑖2=1 + ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 )    ≤ 0   

∑ 𝑢𝑟3
𝑌𝑟3𝑗

𝑠3

𝑟3=1 − (∑ 𝑣𝑖3
𝑥𝑖3𝑗

𝑚3

𝑖3=1 + ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 )    ≤ 0  

where 𝑢𝑟1, 𝑢𝑟2, 𝑢𝑟3, 𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3  and 𝑤𝑝 ≥ ε; 𝑗 = 1, 2, … , 𝑛 

Similarly, we determine the efficiency of two sub-processes (GIE and EN) using the same approach. 

𝐸𝑗0

1 = max ∑ 𝑢𝑟1
𝑌𝑟1𝑗0

𝑠1

𝑟1=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1        (Eq. 4) 

s.t.    ∑ 𝑣𝑖1
𝑥𝑖1𝑗0

𝑚1

𝑖1=1 = 1    

(∑ 𝑢𝑟1
𝑌𝑟1𝑗0

𝑠1

𝑟1=1 +  ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 +  ∑ 𝑢𝑟2

𝑌𝑟2𝑗0

𝑠2

𝑟2=1 ) − 𝐸𝑗0
(∑ 𝑣𝑖1

𝑥𝑖1𝑗0

𝑚1

𝑖1=1 + ∑ 𝑣𝑖2
𝑥𝑖2𝑗0

𝑚2

𝑖2=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 ) =

0   

(∑ 𝑢𝑟1
𝑌𝑟1𝑗

𝑠1

𝑟1=1 + ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 )  − ∑ 𝑣𝑖1

𝑥𝑖1𝑗
𝑚1

𝑖1=1  ≤ 0   

∑ 𝑢𝑟2
𝑌𝑟2𝑗

𝑠2

𝑟2=1 − ( ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 + ∑ 𝑣𝑖1

𝑥𝑖1𝑗
𝑚1

𝑖1=1 )  ≤ 0  

where 𝑢𝑟1, 𝑢𝑟2, 𝑢𝑟3, 𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3  and 𝑤𝑝 ≥ ε; 𝑗 = 1, 2, … , 𝑛 

and 

𝐸𝑗0

2 = max ∑ 𝑢𝑟2
𝑌𝑟2𝑗0

𝑠2

𝑟2=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1               (Eq. 5) 

s.t.    ∑ 𝑣𝑖2
𝑥𝑖2𝑗0

𝑚2

𝑖2=1 +  ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 = 1    

(∑ 𝑢𝑟1
𝑌𝑟1𝑗0

𝑠1

𝑟1=1 +  ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 +  ∑ 𝑢𝑟2

𝑌𝑟2𝑗0

𝑠2

𝑟2=1 ) − 𝐸𝑗0
(∑ 𝑣𝑖1

𝑥𝑖1𝑗0

𝑚1

𝑖1=1 + ∑ 𝑣𝑖2
𝑥𝑖2𝑗0

𝑚2

𝑖2=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 ) =

0   
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(∑ 𝑢𝑟1
𝑌𝑟1𝑗

𝑠1

𝑟1=1 + ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 )  − ∑ 𝑣𝑖1

𝑥𝑖1𝑗
𝑚1

𝑖1=1  ≤ 0   

∑ 𝑢𝑟2
𝑌𝑟2𝑗

𝑠2

𝑟2=1 − ( ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 + ∑ 𝑣𝑖1

𝑥𝑖1𝑗
𝑚1

𝑖1=1 )  ≤ 0   

where 𝑢𝑟1, 𝑢𝑟2, 𝑢𝑟3, 𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3  and 𝑤𝑝 ≥ ε; 𝑗 = 1, 2, … , 𝑛 

and 

𝐸𝑗0

3 = max ∑ 𝑢𝑟3
𝑌𝑟3𝑗0

𝑠3

𝑟3=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1        (Eq. 6) 

s.t.    ∑ 𝑣𝑖3
𝑥𝑖3𝑗0

𝑚3

𝑖3=1 = 1    

(∑ 𝑢𝑟3
𝑌𝑟3𝑗0

𝑠3

𝑟3=1 +  ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 +  ∑ 𝑢𝑟3

𝑌𝑟3𝑗0

𝑠3

𝑟3=1 ) − 𝐸𝑗0
(∑ 𝑣𝑖3

𝑥𝑖3𝑗0

𝑚3

𝑖3=1 + ∑ 𝑣𝑖3
𝑥𝑖3𝑗0

𝑚3

𝑖3=1 + ∑ 𝑤𝑝𝑧𝑝𝑗0

𝑞
𝑝=1 ) =

0   

(∑ 𝑢𝑟3
𝑌𝑟3𝑗

𝑠3

𝑟3=1 + ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 )  − ∑ 𝑣𝑖3

𝑥𝑖3𝑗
𝑚3

𝑖3=1  ≤ 0   

∑ 𝑢𝑟3
𝑌𝑟3𝑗

𝑠3

𝑟3=1 − ( ∑ 𝑤𝑝𝑧𝑝𝑗
𝑞
𝑝=1 + ∑ 𝑣𝑖3

𝑥𝑖3𝑗
𝑚3

𝑖3=1 )  ≤ 0  

where 𝑢𝑟1, 𝑢𝑟2, 𝑢𝑟3, 𝑣𝑖1 , 𝑣𝑖2 , 𝑣𝑖3  and 𝑤𝑝 ≥ ε; 𝑗 = 1, 2, … , 𝑛 

The equations formulated earlier lack bias correction, which means that the efficiency scores obtained through 

DEA can be influenced by sampling variations in the frontier (Tsolas, 2011). Consequently, to remove any bias 

in the results, a bootstrapping estimation is utilized. 

The equations that have been formulated before do not incorporate bias correction, which means that the efficiency 

scores obtained from DEA are influenced by the sampling variation of the frontier. Therefore, a bootstrapping 

estimate will be applied to eliminate the bias in the results. The fundamental concept of bootstrapping involves 

estimating efficiency scores through multiple sampling procedures (Simar & Wilson, 1998). In order to mitigate 

the bias of the estimated value 𝜃�̂�, we create simulated data that closely resembles the original dataset following 

(Kneip et al., 2011; Simar & Wilson, 2007). The bootstrapped samples exhibit distributions and standard 

deviations that closely resemble those of the original data. Consequently, the efficiency score, adjusted for bias, 

can be expressed in the following manner: 

�̃�𝑗 =  �̂�𝑗 − 𝐵𝑖𝑎𝑠 (�̂�𝑗)                   (Eq. 7) 

Where    𝐵𝑖𝑎𝑠 (�̂�𝑗) =  𝐸(�̂�𝑗) −  �̂�𝑗 =  𝐵−1  ∑ �̂�∗
𝑗𝑏

𝐵
𝑏=1 − �̂�𝑗 

�̃�𝑗 =  2�̂�𝑗 − 𝐵−1  ∑ �̂�𝑗𝑏
∗𝐵

𝑏=1 (�̂�𝑗)        (Eq. 8) 

Where b is any value from 1 to B, representing a sample generated from �̂�1 to �̂�𝑗. 

4. Results and discussion 

4.1.  Green innovations efficiency 
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The results of the green innovation production efficiency measurement are reported in Table 4. The results 

presented in column (1) show that in 2020, only six of 41 countries were efficient in producing green innovations 

and knowledge (GIE). However, after taking the bias into account (column 2), the results have changed 

dramatically, with only 3 countries being efficient. The case of China is a good example of how the scale of the 

economy can produce biased efficiency results, with a 0.05 reduction in its efficiency score justifying the use of 

the bias-corrected efficiency model. 

The results reveal that the USA, India, and Russia have the lowest efficiency scores in terms of green innovations 

production, indicating a low performance of these countries in using the financial and human resources they have 

to produce more alive green patents. On the other hand, the results show that countries such as Lithuania, Croatia, 

and Slovenia are the most efficient in utilizing their inputs to produce more green innovations. 
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Table 4. CRS-inputs-oriented efficiency results in 2020 

Country 
(1) 

GIE.CRS.I 

(2) 

GIE.CRS.I 

Bias corrected 

(3) 

EN.CRS.I 

(4) 

EN.CRS.I 

Bias corrected 

(5) 

GE.CRS.I 

(6) 

GE.CRS.I 

Bias.corrested 

Argentina 0.99 0.98 0.97 0.95 0.88 0.86 

Australia 0.89 0.88 0.73 0.70 0.84 0.83 

Austria 0.98 0.98 0.93 0.90 0.92 0.89 

Belgium 0.97 0.97 0.83 0.82 0.87 0.84 

Brazil 0.90 0.89 1.00 0.93 0.83 0.82 

Canada 0.90 0.90 0.77 0.73 0.91 0.90 

Chile 0.99 0.98 0.99 0.97 1.00 0.97 

China 1.00 0.95 0.85 0.81 0.64 0.63 

Colombia 0.99 0.98 0.99 0.95 0.84 0.82 

Croatia 1.00 1.00 0.99 0.98 0.97 0.95 

Czech Republic 0.98 0.97 0.89 0.88 0.95 0.92 

Denmark 0.97 0.97 0.98 0.95 0.98 0.94 

Finland 0.98 0.97 0.99 0.96 1.00 0.96 

France 0.91 0.91 0.87 0.85 0.93 0.92 

Germany 0.87 0.87 0.78 0.74 0.92 0.89 

Hungary 0.99 0.99 0.90 0.88 0.94 0.92 

India 0.84 0.83 1.00 0.98 0.58 0.57 

Israel 0.99 0.99 0.83 0.82 0.76 0.74 

Italy 0.88 0.88 0.91 0.89 0.93 0.92 

Japan 0.93 0.93 0.84 0.82 0.86 0.83 

Korea 0.94 0.94 0.84 0.82 0.82 0.80 

Lithuania 1.00 1.00 0.79 0.77 0.90 0.88 

Malaysia 0.95 0.95 0.88 0.85 0.80 0.79 

Mexico 0.97 0.96 0.95 0.93 0.84 0.82 

Morocco 1.00 0.99 1.00 0.97 0.79 0.77 
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Netherlands 0.94 0.94 0.81 0.80 0.92 0.89 

New Zealand 0.98 0.98 1.00 0.95 0.95 0.93 

Norway 0.97 0.97 1.00 0.93 0.97 0.94 

Peru 1.00 0.99 1.00 0.96 0.89 0.87 

Poland 0.94 0.94 0.87 0.86 0.98 0.96 

Portugal 0.96 0.96 0.99 0.98 0.94 0.92 

Russia 0.87 0.86 0.86 0.84 0.87 0.86 

Singapore 0.99 0.98 0.84 0.80 0.77 0.75 

Slovenia 1.00 1.00 0.91 0.89 0.94 0.91 

South Africa 0.97 0.96 0.93 0.91 0.67 0.65 

Spain 0.88 0.88 0.90 0.88 0.97 0.96 

Sweden 0.95 0.95 1.00 0.95 0.98 0.95 

Thailand 0.98 0.97 1.00 0.94 0.91 0.89 

Ukraine 0.99 0.98 0.98 0.95 0.95 0.92 

United Kingdom 0.84 0.84 0.85 0.83 0.98 0.97 

USA 0.68 0.67 0.71 0.68 0.75 0.73 

Vietnam 0.98 0.97 0.99 0.97 0.88 0.86 
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Regarding environmental efficiency, the results presented in Table 4, Column 3, show that in 2020, eight countries 

were efficient. However, after considering the bias (column 4), none of the studied countries was efficient in using 

green innovations to achieve SDG-7 and SDG-13. The findings also indicate that South American countries have 

the highest environmental efficiency scores when compared to countries from other continents that were 

examined. On the other hand, industrial countries such as the USA, Germany, and Canada have the lowest 

environmental performance. This indicates a weakness in utilizing green innovations toward achieving SDG-7 

and SDG-13. Moreover, this group of countries falls behind other countries in terms of utilizing renewable energy 

production and implementing environment-related taxes, which are crucial policy instruments for attaining SDGs 

for the environment. These findings validate the previous research findings that emphasize the crucial importance 

of environmental taxes and associated policies in enhancing environmental efficiency (Lozano, 2015; Moutinho 

et al., 2017). 

The results also indicate that certain countries, like Lithuania and Australia, exhibit strong scores in terms of green 

innovation efficiency but struggle to effectively utilize these innovations in attaining SDG-7 and SDG-13. This 

result depicts a system failure related to the government's efforts to substitute oil and gas energy with renewable 

energy, in addition to weak environmental policies and regulations (Kalkuhl et al., 2012). 

Regarding the overall environmental efficiency related to countries’ efforts to produce more green innovations 

and make progress in achieving the environment-related SDGs, the results presented in Table 4, Column 5, show 

that, in 2020, only Chile and Finland were efficient in comparison with other countries. However, when we 

corrected the measurement by eliminating the bias, the results (column 6) revealed that none of the studied 

countries were efficient. 

The results reveal that South Africa, the USA, India, and China have the lowest total environmental efficiency 

scores in comparison with the other studied countries. Various factors contribute to this observed low-efficiency 

score. For instance, in South Africa, the lack of financial resources and inadequate environmental regulations can 

account for this phenomenon. Similarly, in China and the USA, the presence of extensive industrialization and 

insufficient environmental policies can help explain the low-efficiency score. 

On the other hand, the results show that the United Kingdom and Chile have the highest total environmental 

efficiency scores. Each country presents a special case from a policymaking point of view. The United Kingdom, 

for example, has a high-efficiency score in neither producing green innovations nor using them to achieve SDG-

7 and SDG-13. But it has a high total environmental efficiency score. This can be explained by the fact that other 

SDGs are achieved through other economic and social policies, not environment-oriented ones. In Chile, the case 

is different, where the SDGs are being achieved by following environmentally friendly policies. Thus, countries 

can achieve environment-related SDGs, and this has a developmental spillover effect on other SDGs. These results 

indicate that being efficient at producing green innovations or using green innovations to achieve environment-

related SDGs does not necessarily mean having developmental spillovers to other SDGs. 

To track the progress made in all types of environment-related efficiencies, we first take the total average 

efficiency score of all efficiencies scores, second, we measure the growth or decline of each efficiency between 

2000 and 2020. The efficiency progress analysis results are presented in Table 5. 
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The results reported in Table 5 show that the majority of advancements made primarily revolve around knowledge 

and the production of green innovations (GIE). The average improvement rate for the efficiency of knowledge 

and green innovations (GIE) is determined to be 27%. Nevertheless, a considerable number of countries have not 

made noteworthy strides in environmental efficiency (EN) through the optimal utilization of green innovations to 

attain SDGs related to the environment. 

The results also reveal that the high level of overall environmental efficiency (GE) in the best countries, such as 

Finland, Denmark, and France, is the result of an improvement in the GIE efficiency of green innovations rather 

than an improvement in their utilization. Furthermore, the best-performing countries in terms of using green 

innovations to achieve SDGs related to the environment are Spain, Denmark, Mexico, and France. Meanwhile, 

the worst-performing countries are China and the United States. 

Overall, the results suggest that some countries have made significant progress in environmental efficiency, but 

substantial efforts are still required to tackle the current global environmental challenges that confront our planet. 
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Table 5. Environmental efficiency progress 

Country 
GIE 

2000 

EN 

2000 

GE 

2000 

GIE 

2010 

EN 

2010 

GE 

2010 

GIE 

2020 

EN 

2020 

GE 

2020 

Total 

2000 

Total 

2010 

Total 

2020 

GIE 

Progress 

EN 

Progress 

GE 

Progress 

Total 

Progress 

Argentina 0.85 0.92 0.90 0.67 0.92 0.90 0.98 0.95 0.86 0.89 0.83 0.93 15% 3% -4% 4% 

Australia 0.91 0.77 0.83 0.63 0.65 0.82 0.88 0.70 0.83 0.84 0.70 0.80 -3% -9% 0% -5% 

Austria 0.81 0.87 0.92 0.55 0.91 0.91 0.98 0.90 0.89 0.87 0.79 0.92 21% 3% -3% 6% 

Belgium 0.63 0.87 0.84 0.57 0.82 0.93 0.97 0.82 0.84 0.78 0.77 0.88 54% -6% 0% 13% 

Brazil 0.79 0.93 0.84 0.72 0.92 0.82 0.89 0.93 0.82 0.85 0.82 0.88 13% 0% -2% 4% 

Canada 0.82 0.79 0.84 0.67 0.77 0.83 0.90 0.73 0.90 0.82 0.76 0.84 10% -8% 7% 2% 

Chile 0.82 0.96 0.97 0.68 0.96 0.97 0.98 0.97 0.97 0.92 0.87 0.97 20% 1% 0% 5% 

China 0.88 0.91 0.77 0.87 0.73 0.62 0.95 0.81 0.63 0.85 0.74 0.80 8% -11% -18% -6% 

Colombia 0.87 0.97 0.86 0.68 0.96 0.88 0.98 0.95 0.82 0.90 0.84 0.92 13% -2% -5% 2% 

Croatia 0.74 0.98 0.92 0.66 0.98 0.97 1.00 0.98 0.95 0.88 0.87 0.98 35% 0% 3% 11% 

Czech Republic 0.73 0.88 0.93 0.62 0.86 0.96 0.97 0.88 0.92 0.85 0.81 0.92 33% 0% -1% 8% 

Denmark 0.62 0.88 0.94 0.57 0.88 0.96 0.97 0.95 0.94 0.81 0.80 0.95 56% 8% 0% 17% 

Finland 0.61 0.95 0.95 0.55 0.91 0.94 0.97 0.96 0.96 0.84 0.80 0.96 59% 1% 1% 14% 

France 0.67 0.81 0.83 0.57 0.83 0.89 0.91 0.85 0.92 0.77 0.76 0.89 36% 5% 11% 16% 

Germany 0.92 0.76 0.82 0.59 0.69 0.82 0.87 0.74 0.89 0.83 0.70 0.83 -5% -3% 9% 0% 

Hungary 0.77 0.94 0.97 0.65 0.93 0.97 0.99 0.88 0.92 0.89 0.85 0.93 29% -6% -5% 4% 

India 0.77 0.97 0.58 0.69 0.85 0.55 0.83 0.98 0.57 0.77 0.70 0.79 8% 1% -2% 3% 

Israel 0.64 0.88 0.79 0.58 0.83 0.75 0.99 0.82 0.74 0.77 0.72 0.85 55% -7% -6% 10% 

Italy 0.73 0.88 0.93 0.61 0.87 0.92 0.88 0.89 0.92 0.85 0.80 0.90 21% 1% -1% 6% 

Japan 0.93 0.79 0.79 0.90 0.77 0.81 0.93 0.82 0.83 0.84 0.83 0.86 0% 4% 5% 2% 

Korea 0.69 0.92 0.83 0.86 0.87 0.84 0.94 0.82 0.80 0.81 0.86 0.85 36% -11% -4% 5% 

Lithuania 0.80 0.94 0.91 0.66 0.84 0.94 1.00 0.77 0.88 0.88 0.81 0.88 25% -18% -3% 0% 

Malaysia 0.83 0.95 0.85 0.66 0.89 0.78 0.95 0.85 0.79 0.88 0.78 0.86 14% -11% -7% -2% 

Mexico 0.90 0.85 0.83 0.72 0.96 0.82 0.96 0.93 0.82 0.86 0.83 0.90 7% 9% -1% 5% 

Morocco 0.79 0.97 0.73 0.67 0.96 0.78 0.99 0.97 0.77 0.83 0.80 0.91 25% 0% 5% 10% 
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Netherlands 0.66 0.84 0.92 0.58 0.79 0.97 0.94 0.80 0.89 0.81 0.78 0.88 42% -5% -3% 9% 

New Zealand 0.73 0.94 0.98 0.64 0.92 0.98 0.98 0.95 0.93 0.88 0.85 0.95 34% 1% -5% 8% 

Norway 0.67 0.93 0.95 0.60 0.95 0.96 0.97 0.93 0.94 0.85 0.84 0.95 45% 0% -1% 12% 

Peru 0.87 0.96 0.89 0.68 0.95 0.93 0.99 0.96 0.87 0.91 0.85 0.94 14% 0% -2% 3% 

Poland 0.80 0.92 0.97 0.70 0.88 0.96 0.94 0.86 0.96 0.90 0.85 0.92 18% -7% -1% 2% 

Portugal 0.81 0.94 0.93 0.62 0.97 0.92 0.96 0.98 0.92 0.89 0.84 0.95 19% 4% -1% 7% 

Russia 0.75 0.86 0.83 0.72 0.73 0.82 0.86 0.84 0.86 0.81 0.76 0.85 15% -2% 4% 5% 

Singapore 0.66 0.93 0.80 0.61 0.85 0.84 0.98 0.80 0.75 0.80 0.77 0.84 48% -14% -6% 5% 

Slovenia 0.70 0.95 0.91 0.58 0.90 0.92 1.00 0.89 0.91 0.85 0.80 0.93 43% -6% 0% 9% 

South Africa 0.78 0.89 0.69 0.70 0.88 0.68 0.96 0.91 0.65 0.79 0.75 0.84 23% 2% -6% 6% 

Spain 0.86 0.80 0.94 0.65 0.82 0.89 0.88 0.88 0.96 0.87 0.79 0.91 2% 10% 2% 5% 

Sweden 0.63 0.92 0.97 0.54 0.96 0.96 0.95 0.95 0.95 0.84 0.82 0.95 51% 3% -2% 13% 

Thailand 0.85 0.94 0.97 0.70 0.94 0.93 0.97 0.94 0.89 0.92 0.86 0.93 14% 0% -8% 1% 

Ukraine 0.75 0.94 0.89 0.68 0.92 0.91 0.98 0.95 0.92 0.86 0.84 0.95 31% 1% 3% 10% 

United Kingdom 0.79 0.85 0.93 0.55 0.81 0.96 0.84 0.83 0.97 0.86 0.77 0.88 6% -2% 4% 2% 

USA 0.91 0.71 0.64 0.71 0.70 0.62 0.67 0.68 0.73 0.75 0.68 0.69 -26% -4% 14% -8% 

Vietnam 0.84 0.95 0.86 0.69 0.95 0.87 0.97 0.97 0.86 0.88 0.84 0.93 15% 2% 0% 6% 

Average 0.78 0.90 0.87 0.66 0.87 0.87 0.94 0.88 0.86 0.85 0.80 0.89 27% 4% 6% 6% 

The colored cells represent values above or below the average. The green color indicates the progress made between 2000 and 2020, while the red color represents a decline 

in the process of improving environmental efficiency. 

 



19 
 

An aggregation was performed based on their proximity to investigating the progress patterns of the countries 

under study. Starting with knowledge and green innovation efficiency. Figure 2 shows an inverted efficiency 

curve, indicating that policymakers have focused on optimizing input utilization to improve efficiency, which has 

been found to yield better long-term results. The results also suggest that during the initial stages of knowledge 

and green innovations production, the utilization of inputs is associated with a decrease in efficiency. However, 

over time, the efficiency of the process exhibits an upward trend. 

  

Fig. 2. International GIE.CRS.I comparison                  

Our findings highlight that China, South American countries, and European nations exhibit superior performance 

in terms of green innovations production. Conversely, North American countries and India demonstrate relatively 

lower levels of efficiency compared to the other countries examined. Recent studies that revealed that R&D 

spending and intellectual outputs were the primary predictors of the production of green technologies confirm this 

finding.(Cao et al., 2023).  

To get more insights from the green innovation systems, the output-oriented model was also applied, so we can 

measure not only how efficient countries are in using their inputs, but also to what extent they are efficient in 

maximizing their outputs no matter how much input they use. The results of the CRS-output-oriented model show 

that North American countries, India, and European countries are the most efficient economies at maximizing 

their green innovations outputs. However, this high output-oriented efficiency is achieved at the expense of the 

inputs required to produce the same number of green innovations. Therefore, output-oriented efficiency does not 

depict the environmental behaviour of economies in terms of the rational use of financial and human resources 
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(Alnafrah, 2021). In other words, in countries with low CRS-input-oriented efficiency, the number of inputs 

required to produce one alive environment-related patent is much higher than those required in other countries. 

The production of environmental knowledge is a complex process that requires resources, time, and effort. Figure 

3 shows that even though the green innovations efficiency may increase over time, the relationship between the 

resources allocated and the resulting outputs is not straightforward. This process is subject to the law of 

diminishing returns (Barbero et al., 2021), indicating that beyond a certain threshold, augmenting the inputs will 

not yield a commensurate rise in the outputs. This pattern has been documented across all analyzed nations.  

In other words, while it may initially be easy to produce green alive patents, over time, it becomes more difficult 

to do so, even with increased resource allocation. Therefore, policymakers need to focus on optimizing the use of 

inputs in the production process. This is because inputs, such as research and development expenditures and 

human resources, are within their control, while outputs, such as green patents, are influenced by various factors 

beyond their control. Thus, policymakers should shift their focus from output-oriented efficiency to input-oriented 

efficiency in the field of green innovations production. By doing so, they can ensure that the available resources 

are used most effectively and efficiently as possible. 

 

Fig. 3. International GIE.CRS.O comparison 

Regarding environmental efficiency, figure 4 shows that China and North America have the lowest efficiency 

scores for achieving environmental SDGs, namely SDG-7 and SDG-13. In contrast, India, South America, and 

South Africa have the highest efficiency scores for achieving these two goals. This implies that major 

industrialized nations such as China, the USA, and the European Union do not exploit green innovations to 

improve their sustainable development performance. 
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For instance, China lags in renewable energy production compared to Brazil, which negatively affects its 

environmental efficiency. This indicates a lack of commitment by the Chinese government to increase clean 

energy production despite the existence of numerous green patents. Furthermore, green tax policies have been 

proven ineffective in major industrialized countries in achieving SDGs. In contrast, South American countries 

demonstrate how green innovations can enhance renewable energy production, thereby improving the efficiency 

of resource utilization for SDGs (Tchorzewska et al., 2022). 

The case of India appears unexpected, but it is a result of a different approach to interpreting efficiency. In this 

context, the high level of efficiency stems from the government's increased focus on improving green taxes' 

structure and raising them for non-environmentally friendly activities. The latest data shows that the Indian 

government doubled green tax revenues between 2017 and 2020, resulting in improved environmental efficiency. 

The latest Sustainable Development Report also indicates that India has achieved SDG-13 Sustainable, while still 

facing challenges in achieving SDG-7 (Sachs et al., 2022). 

 

 Fig. 4. International EN.CRS.I comparison 

Conversely, when evaluating output-oriented environmental efficiency, figure 5 shows that certain countries like 

India and North America exhibit contradictory outcomes. Specifically, industrialized nations are more effective 

at maximizing output from a given input. Nevertheless, the latest Sustainable Development Report reveals that 

these countries still face significant challenges in achieving SDG-7 and SDG-13. Consequently, output-oriented 

efficiency fails to depict the true progress made by governments towards environmental sustainable development. 

Instead, the input-oriented efficiency analysis provides a more accurate representation of governmental efforts 

and policies geared towards green innovations and renewable energy to achieve environmental SDGs. 
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Fig. 5. International EN.VRS.O comparison 

Regarding the role of environmental efficiency and green innovations efficiency in achieving SDGs, the results 

presented in Figure 6 reveal mixed results. The cases of China and India serve as notable illustrations of the 

contradictory connection between green innovations and sustainable development. 

In China, despite high knowledge and green innovations efficiency, the efficiency did not translate into better 

environmental sustainable development (Ma et al., 2021). India, on the other hand, shows weak efficiency in 

producing environmental knowledge and green innovations, but recent government policies helped improve 

environmental efficiency in achieving certain SDGs. However, India's overall sustainable development efficiency 

remained low due to poor performance in other SDGs indicators (B.-C. Xie et al., 2014). 

The European Union, despite having a high level of knowledge and green innovations efficiency, shows moderate 

environmental efficiency. Nevertheless, the EU's overall environmental efficiency remains high, indicating that 

green innovations have positive spillovers on achieving other SDGs. European government policies aimed at 

achieving SDGs currently prioritize the environmental aspect to a certain extent. However, an increased focus on 

green investments could greatly enhance the sustainability opportunities of the European Union. The current 

model of prioritizing industrial activities has had negative impacts on policy outcomes, which could be mitigated 

by prioritizing environmentally friendly practices, particularly given recent events such as the Russian-Ukrainian 

war and disruptions in energy supply chains. These circumstances have prompted some European Union countries 

to adopt energy policies that are not environmentally sustainable, highlighting the need for a shift towards more 

environmentally conscious practices (Biresselioglu et al., 2018). 

South American countries, particularly Brazil, provide a good example of high efficiency in producing green 

innovations and sustainable environmental efficiency. This translated into high overall sustainable efficiency, 

reflecting the optimal utilization of environmentally friendly policies and tools (Banerjee & Murshed, 2020). 
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Fig. 6. International GE.CRS.I comparison 

To acquire a thorough evaluation of countries' environmental efficiency, we calculate the average of their previous 

environmental efficiency scores. The outcomes are showcased in Figure 7, revealing subpar levels of 

environmental efficiency in industrial economies like the USA, China, and India. These lower levels can be 

ascribed to a variety of factors. In India, it could be due to the low production efficiency of green innovations, 

while in China, it could be due to the weak implementation of green innovations and environmental policies to 

achieve SDGs (Cao et al., 2023; Huang et al., 2021). In the case of the USA, the low overall environmental 

efficiency results from the weakness of both factors (Shapiro, 2022). 

On the other hand, South American and European Union countries serve as exemplary models for other countries. 

These countries exhibit superior environmental efficiency levels by effectively utilizing their financial and human 

resources to produce green innovations and efficiently implementing them to achieve SDGs, not only limited to 

the environment but also beyond. 
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Fig. 7. Total average of environmental efficiencies 

We examined the correlation between efficiency values to assess the impact of green innovations on enhancing 

the overall efficiency of sustainable development. Figure 8 shows a positive relationship between green 

innovations and the level of overall sustainable development efficiency. This confirms the main hypothesis on 

which the research was based. This means that increasing the green innovations efficiency plays an important role 

in improving and accelerating the process of achieving the overall SDGs. 
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Fig. 8. The relationship between GE and GIE 

Concerning the relationship between the environmental efficiency associated with achieving SDG7 and SDG13 

(EN) and the total environmental efficiency (GE), Figure 9 illustrates a positive correlation. However, some 

deviations from this pattern were observed in the cases of China, the USA, and India, which are characterized by 

high industrial production intensity, a significant carbon footprint, and inadequate government policies concerning 

the environment. The low level of environmental efficiency in these countries undermines progress towards 

achieving the two aforementioned SDGs, and, consequently, the overall SDGs (Shapiro & Walker, 2020). 

 

Fig. 9. The relationship between GE and EN 
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On the other hand, in figure 10, a more pronounced positive correlation can be observed between the overall 

environmental efficiency (GE) and the efficiency of green innovations (GIE). Again, some countries like 

Germany, Canada, and Australia provide different cases, where producing more green innovations does not lead 

to achieving the SDG-7 and SDG-13. These countries have a high level of green innovations efficiency, but their 

performance in terms of environmental efficiency (EN) is low in comparison with other studied countries. This 

situation calls for an environmental approach to achieve the SDGs including, but not limited to, increasing 

renewable energy production and reforming the environment-related taxation system. 

 

Fig. 10. The relationship between GIE and EN 

To provide more profound policy benchmarking, a clustering analysis is conducted to explore the environmental 

frontiers in each cluster. The K-means clustering results shown in Figure 11 reveal that countries are clustered 

into three groups based on their efficiency scores. 
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Fig. 11. Countries clustering based on their GIE and EN 

In Figure 11, the left plot illustrates that countries within the cluster exhibit varying levels of green innovations 

efficiency and overall environmental efficiency. For instance, Russia is clustered together with South Korea and 

Australia, but its policy benchmarks are derived from cluster 2, which comprises Germany, Canada, and the 

Netherlands. This particular group of countries serves as a reference point for Russia to embrace more 

environmentally friendly policies, allowing it to approach the center of the optimal cluster and align with countries 

like Finland, Denmark, and Sweden, ultimately achieving a higher score in green innovations efficiency. 

Similarly, in the right plot of Figure 11, the USA should adopt policies and practices pertaining to the environment 

that resemble those implemented by benchmarking countries such as Japan, Belgium, and the Netherlands. 

The abovementioned benchmarking cases serve as mere illustrations of how policymakers can address the low 

levels of different environment-related efficiencies. Therefore, it is imperative for future researchers to undertake 

comprehensive analyses when examining benchmarking studies pertaining to the environment. 

5. Conclusion and policy implications 

This study was intended to investigate to what extent countries are efficient in producing green innovations, and 

how these green innovations have been used to achieve environment-related SDGs, SDG-7 and SDG-13. To do 

so, a biased-corrected network DEA was applied to a set of environment-related variables. To capture the system 

failure of utilizing green innovations to achieve the SDGs, three types of efficiency were measured across different 

countries from several regions. Our study contributes to the policymaking process by revealing the heterogenous 

environmental performance across countries in the course of green economy and green innovations production. 

We primarily contribute to the debate on the role of green innovations in achieving the SDGs, and what policy 

interventions are required to stimulate the environmental performance of countries. 

Our findings revealed that being efficient in creating or utilizing green innovation to achieve environment-related 

SDGs does not guarantee that there will be positive developmental spillovers to other SDGs. Therefore, 

policymakers should accompany green innovations with other policies such as command and control 

environmental policy, environment-related taxes, and support for renewable energy production. Additionally, our 

findings indicate that a high overall score for environmental efficiency may not always correspond to greater 

sustainability in certain countries. Through analysing the structural aspects of both green innovations efficiency 

and environmental efficiency, we found that countries with high-efficiency scores may have achieved non-

environmental SDGs through economic and social policies rather than environmental initiatives or approaches. 

As a result, this high score may mislead policymakers. 

Our study also revealed that the majority of progress has been made in knowledge and green innovations 

production (GIE). On the other hand, most countries have not made significant advancements in environmental 

efficiency (EN) by effectively utilizing green innovations to attain SDGs related to the environment. Therefore, 

policymakers should focus on implementing policies that prioritize environment-oriented SDGs to enhance 

environmental efficiency. This can be achieved by investing in green technologies, promoting sustainable 

practices, and encouraging businesses to adopt environmentally friendly approaches. Moreover, policymakers 
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should consider integrating non-environmental SDGs with environment-oriented ones to avoid misleading high-

efficiency scores. 

More importantly, analysing the progress made in environmental efficiency suggested that during the early stages 

of knowledge and green innovations production, input utilization may initially result in decreased efficiency. 

However, over time, this process will become more efficient. Therefore, policymakers should also consider the 

inverted efficiency curve when developing policies and allocate resources accordingly. This means that more 

focus should be placed on promoting the optimal utilization of green innovations to achieve SDGs related to the 

environment, rather than solely relying on economic and social policies. 

Finally, we found that green innovations efficiency plays a more decisive role than environmental efficiency, 

which is related only to SDG-7 and SDG-13, in achieving the SDGs. This signifies the importance of green 

innovations in achieving multidimensional sustainability. Policymakers should therefore prioritize green 

innovation-based solutions in their SDGs-related policies to tackle various challenges in the sustainable 

development process. Our study demonstrates that a few countries have made noteworthy progress in this pursuit, 

but there is still a lot of work to be done in addressing the global environmental challenges confronting the world 

at present. 
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Appendix A. 

Table A. 1 List of studied countries 

Region Countries 

EU and other European countries Austria, Belgium, Croatia, Czech Republic, 

Denmark, Finland, France, Germany, Hungary, Italy, 

Lithuania, Netherlands, Norway, Poland, Portugal, 
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Russia, Slovenia, Spain, Sweden, Ukraine, United 

Kingdom 

Asia China, India, Israel, Japan, Korea, Malaysia, 

Singapore, Thailand, Vietnam 

South America Argentina, Brazil, Chile, Colombia, Peru 

North America Canada, Mexico, USA 

Africa Morocco, South Africa 

Others Australia, New Zealand  

 

Table A. 2 Data source and descriptive statistics 

Variable Code Source Mean Std. dev. 

overall 

Std. dev 

between 

Std. dev 

within 

Research and 

development 

expenditure as % 

of GDP (RD) 

RD WDI database 1.64 1.05 1.02 0.27 

Articles published 

in environmental 

science (AP) 

AP Scopus 

database 

3168 6241 5191 3552 

Number of alive 

environment 

patents (GI) 

GI Orbit 

Intelligence 

database 

1023 7517 3855 6479 

Environmentally 

related tax 

revenue (Etax) 

Etax OECD 

database 

1.97 1.09 1.10 0.35 

Renewable 

Energy generation 

(GWh) (RenEn) 

RenEn OECD 

database 

29258.26 68742.1 56041.12 40696 

SDG.7 – 

Affordable and 

clean energy 

SDG.7 Sustainable 

development 

report 

73.22 8.56 8.29 2.47 

SDG.13 – Climate 

action 

SDG.13 Sustainable 

development 

report 

66.21 20.66 20.76 2.38 

SDG.Overall SDG Sustainable 

development 

report 

73.43 6.53 6.27 2.04 
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Number of 

observations 

 882 

Number of 

countries 

 42 

 

Table A. 3 RTS test results 

Year 
Orientation test p-value 

KE EN GE 

2000 0.02 0.02 0.02 

2001 0.02 0.02 0.02 

2002 0.02 0.02 0.02 

2003 0.02 0.02 0.02 

2004 0.02 0.02 0.02 

2005 0.02 0.02 0.02 

2006 0.02 0.02 0.02 

2007 0.02 0.02 0.02 

2008 0.02 0.02 0.02 

2009 0.02 0.02 0.02 

2010 0.02 0.02 0.02 

2011 0.02 0.02 0.02 

2012 0.02 0.02 0.02 

2013 0.02 0.02 0.02 

2014 0.1 0.02 0.02 

2015 0.005 0.02 0.02 

2016 0.48 0.02 0.02 

2017 0.48 0.02 0.02 

2018 0.6 0.02 0.02 

2019 0.6 0.02 0.02 

2020 0.5 0.02 0.02 
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 Output-oriented green innovations production is subject to the law of diminishing returns. 

 Policymakers should redirect their attention from output-oriented efficiency to input-oriented 

efficiency when it comes to producing green innovations. 

 Achieving SDGs goals in industrial economies comes at the cost of negative environmental impacts. 

 South American and European Union countries are at the forefront in terms of efficiency in green 

innovations. 
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