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of a 45 μm2 region of interest. In contrast, the previous study measured 
multiple fibers across the entire width of a 427 μm region of interest, 
which lowers the possibility for sampling error. Moreover, where the 
previous study measured waves moving in the x-z direction (anterior to 
posterior), any crimp measured by Tan et al. would be within the same 
x-y plane, since any fibers moving with depth into the stroma would not 
produce a strong SHG signal. Furthermore, these measurements were 
taken immediately after treatment, when the dehydrating effects of the 
riboflavin dextran solution are still relevant. This is especially important 
since SHG imaging has also been used to show increased fiber packing in 
the anterior corneal stroma immediately after dextran exposure [99]. 
Taking into consideration all the listed differences of the two studies, it 
is still possible that the described results are not entirely contradictory, 
since the imaging was performed from different angles. A fiber that 
appears wavier when viewed from the top, may appear straighter and 
shortened when viewed from the side because the observed waves are 
secluded to the cross sectional plane. It is also possible that crimping 
may occur on a molecular scale, within fibrils, to induce wavier, 
shortened fibers. 

Disagreement in this area is prevalent in the literature [100]. For this 

reason, another study has attempted to explain these discrepancies. 
Bueno et al. claims results of these studies differ not only due to their 
many different methodologies of tissue preparation, imaging, and im-
aging analysis, but because of the different species used [101]. Bueno’s 
study compared SHG imaging analysis after in vivo UVA CXL in both 
avian and rabbit corneas, Figs. 2 and 3. The rabbit corneas, which are 
naturally less organized than avian corneas, were more structurally 
affected by the procedure. The authors qualitatively described the 
treated rabbit cornea as having collagen bundles which “appeared more 
delineated and less interwoven,” particularly in the posterior region. 
Similarly the avian cornea, Fig. 2, showed similar interweaving in the 
anterior and mid stroma in both treated and untreated. In the posterior, 
however, where the untreated stroma no longer showed such a high 
degree of initial order, the treated cornea showed a more drastic change, 
with long collagen fibers running parallel to each other after treatment. 
When the authors analyzed the images to calculate the degree of isot-
ropy (DOI) of the samples, they discovered that treated rabbit corneas 
experienced an increase in DOI at every depth, while avian corneas, with 
much higher initial DOIs, did not experience any significant increase in 
DOI at any depth. The authors concluded that the more ordered the 
original collagen structure, the less increase in order seen due to the 
procedure. Additionally, to our knowledge, all SHG studies have per-
formed imaging within tissue, and no study has been performed in a 
collagen gel. It could be useful to observe the effects of UVA CXL within 
a simplified structure. A comparison of the methods and main results of 
these studies can be seen in Table 2, as well as a diagram to summarize 
these results in Fig. 4. 

3. Cellular effects 

3.1. Epithelium 

Epithelial debridement is a necessary step in the traditional Dresden 
protocol for UVA CXL. Without it, riboflavin penetration does not occur 
in concentrations required for effective crosslinking. Epithelial 
debridement is painful for the patient, delays visual recovery, and in-
creases the risk of bacterial keratitis and corneal ulceration [102–104] 
and requires 2 days to heal in rabbits or as long as 3 weeks in humans 
[43,105]. 

Table 2 
Fibril Waviness.  

Authors Methods Conclusion 

Tissue Imaging Measurement 

Bradford 
et al. 
[70] 

Rabbit: in 
vivo 

SHG: 
cross 
section 

Traced fibrils 1% decreased 
crimp after UVA 
CXL 

Tan et al. 
[32] 

Porcine: 
ex vivo 

SHG: en 
face 

2D FFT Decreased 
waviness after 
UVA CXL 

Germann 
et al. 
[72] 

Porcine: 
ex vivo 

SHG: en 
face 

Order coefficient Increased order 
and straighter 
fibrils after UVA 
CXL 

Bueno 
et al. 
[73] 

Avian/ 
Rabbit: in 
vivo 

SHG: en 
face 

Degree of isotropy, 
preferential 
orientation, and 
structural 
dispersion 

The more ordered 
the original 
collagen structure, 
the less increase in 
order seen after 
UVA CXL  

Fig. 4. Suggestive SHG diagram. Literature reviewed 
in this article has shown collagen fibers to be 
straighter after UVA CXL when viewed in a cross 
section (bottom) [98], and wavier when viewed in an 
en face orientation (top) [37]. Literature also suggests 
that observed corneal flattening could be due to the 
shortening of collagen fibers as they straighten in one 
orientation, and crimp in another, (Right). The red 
fibers before and after crosslinking were highlighted 
to illustrate the transition from a long straight fiber to 
a shortened wavier fiber after treatment.   
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To avoid epithelial debridement research has focused on the devel-
opment of a transepithelial UVA CXL protocol. Various methods have 
been used to enhance transepithelial riboflavin penetration without 
debridement prior to UVA exposure. Though clinical studies have re-
ported fewer severe complications from experimental transepithelial 
UVA CXL techniques on average, there has also been minimal success, 
with reported stabilization of KMax (maximal corneal curvature) of only 
43% compared to 93% reported after traditional UVA CXL [20,57]. 
Additionally, the line of demarcation in the stroma, the presumed zone 
of transition between treated and untreated tissue often used as a 
measure of the depth of treatment, was observed to be shallower when 
the epithelium remained intact [20]. This is likely due to the epithelium 
acting as a barrier to UVA light as well as riboflavin penetration. Ribo-
flavin within the epithelium could absorb much of the UVA light and 
reduce the UVA intensity deeper within the stroma. Research has also 
shown extensive epithelial damage after transepithelial UVA CXL, in 
response to both the UVA exposure and the methods used to facilitate 
riboflavin penetration [62,77,78,106–108]. Benzalkonium Chloride 
(BAK), commonly used as an excipient, is especially toxic to cells and has 
been shown to damage the epithelial layer even without subsequent 
UVA exposure [106,109]. Taneri et al. reported that epithelial defects 
and perceived pain were common following various transepithelial UVA 
CXL techniques, though these instances were less common using 
methods that produced less stromal riboflavin penetration [107]. This 
indicates an inverse relationship between riboflavin penetration and 
epithelial disruption. Additionally, Chow et al. reported more extreme 
epithelial damage following accelerated transepithelial UVA CXL, in 
which higher intensity UVA light is used to shorten the procedure time 
[62]. In this study 64% of eyes experienced complications including 
large epithelial defects and diffuse punctate epithelial erosions, with 
100% of patients reporting significant postoperative pain. This indicates 
that epithelial damage is not only a result of varying riboflavin pene-
tration techniques, but also due to UVA exposure itself. The free oxygen 
radicals which induce crosslinking in the stroma also damage epithelial 
cells. 

A new technique to imbibe the corneal stroma with riboflavin has 
shown promise in minimizing epithelial damage prior to crosslinking 
therapy. By focusing a high pulse energy infrared femtosecond beam 
into small, widely spaced spots, a pattern of small channels can be 

drilled into the surface epithelium. At 2 μm in diameter and only 25 μm 
long, each channel causes minimal cellular disruption while allowing 
free passage of riboflavin through the epithelium. Microchannels com-
bined with more concentrated riboflavin drops were shown to facilitate 
similar levels of stromal riboflavin concentration as the standard 
epithelial debridement method [106]. Additionally, epithelial damage 
due to the microchannels was undetectable after 24 h of organ culture, 
as evidenced by phalloidin and propidium iodide cellular staining 
(Fig. 5). 

3.2. Stromal keratocytes 

Stromal Keratocyte death occurs due to UVA exposure of around 0.5 
mW/cm2 [42,110], resulting in an acellular zone within the anterior 
stroma to a depth of 200–300 μm [41,43,84,98,111]. Post treatment 
activation and migration of keratocytes into corneal fibroblasts from 
adjacent regions back into the acellular zone and the expression of 
disordered extracellular matrix produced by those fibroblasts is 
responsible for the development of haze, as these cells scatter light more 
than their non-activated counterparts [112]. Wollensak et al. detailed 
severe haze in rabbit corneas lasting one week, while other studies 
showed haze peaking at one month [43,84,98]. Clinically, haze has been 
shown to persist for six to eight months, and over a year in 10% of cases, 
leading to permanent corneal scarring in 2.9% of cases [44,71,113]. It 
has previously been observed by Wollensak and Kozobolis via light 
microscopy that keratocyte repopulation begins around one month post 
crosslinking in rabbits, with full cellular repopulation reported by six 
weeks [43,44]. Both reported a continuing presence of acellular areas 
and apoptotic changes such as apoptotic bodies, shrunken cell nuclei, 
and chromatin condensation at 4 weeks, especially around the periphery 
of irradiation. Kruger also observed cellular repopulation by 6 weeks 
using a combination of confocal laser scanning microscopy and two 
photon excited fluorescence, albeit with a lower cellular density than 
seen in controls [30]. By contrast, we reported persistent acellular re-
gions at three months post UVA CXL, as well as an additional acellular 
region below the region of crosslinking, using a combination of in vivo 
CMTF and cellular fluorescence staining, as seen in Fig. 5 [84,98]. 
Additionally, studies of corneal scrape and freeze injuries have shown 
stromal cellular repopulation 3–14 days after injury, suggesting the 

Fig. 5. Cell Staining 
The top row of images represents samples from the 
central CXL region and the edge of the CXL region 
bordering the periphery from one month samples (A 
and B respectively). The bottom row represents cor-
responding images from three month samples (C and 
D). Staining with Phalloidin (green; 1:100) and Pro-
pidium Iodide (red; 0.01 mg/ml) showed little 
cellular repopulation into the central CXL region, 
shown with blue CAF, at either time point. Images 
from the periphery show migrating cells into the CXL 
region. The depth of the acellular zone in the central 
cornea, indicated by arrows, was measured to be 40.5 
± 4.1%, and 43.7 ± 11.3% of the stromal thickness 
on average for one and three month samples. This 
corresponds to the measured depth of CAF. Also, in 
two of the four one month samples, a second deeper 
acellular region was noted, pictured in A [98].   
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delayed repopulation after UVA CXL may be due to either the biome-
chanical changes causing fibril stiffening and thinning, or to the UVA 
exposure itself [114]. 

4. Conclusion 

In the last two decades since corneal UVA CXL has been developed 
research has focused on discovering the mechanisms that govern the 
process and the effects it has on corneal tissue. The main objective of the 
procedure is to enhance stromal mechanical stiffness via alteration of 
the corneal collagen structure, and for that reason research has been 
focused on structural changes. There is a general consensus that the 
procedure mechanically strengthens the corneal stroma and leads to a 
low degree of corneal flattening, collagen fibril thickening, and halted 
progression of corneal ectatic disease. The mechanism of these changes 
are not often agreed upon, however. For example, some authors claim 
increased fibril waviness plays a role in corneal flattening while others 
claim the opposite [37,98]. Though collagen structure and mechanical 
changes are important factors underlying UVA CXL, the procedure can 
be damaging to certain layers of the cornea. For this reason, safety 
studies focus on cellular responses to UVA CXL. Studies on the timeline 
of keratocyte repopulation are plagued with the same inconsistency in 
results as structural studies, with repopulation being reported anywhere 
from six weeks to three months or longer [30,43,44,98]. 

In either case, the truth is likely more complicated than any one 
study suggests. Taken as a whole it is difficult to compare most studies to 
each other, due to their varying protocols, measurement techniques, and 
even species of test subjects used. There is also a lack of consistency in 
definitions. For example, some studies which describe full cellular 
repopulation also describe continuing acellular regions or lower than 
normal cellular density [30]. It is important to take all of these factors 
into account when comparing various studies to determine whether 
differing results between individual studies could simply be a case of one 
question being viewed from many different perspectives. 

Finally, as more researchers begin to turn their focus to alterations of 
UVA CXL it has become necessary to predict how various changes to the 
standard protocol would ultimately affect the results of the procedure. 
This has proved difficult, however, since the effects of the original 
procedure are not wholly understood. Building up a larger body of 
research focused on the effects addressed in this review would enable 
researchers to better predict the outcomes of protocol adjustments, 
allowing for more customized procedures to treat each individual pa-
tient’s needs. 
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