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Abstract—Semiconductor devices are becoming increasingly 

sensitive to even the smallest disruptions resulting from ongoing 

technological advancements. The minute variations in the 

nanodevices have become even more discernible as they have been 

greatly enlarged. Before forward device scaling, it is imperative to 

resolve these variations thoroughly. TFETs exhibit several 

drawbacks, including a low on-current that hampers the 

operational speed, a lifespan of over a decade, ambipolar current 

behavior, and reduced radio frequency performance. TFETs are 

very promising solid-state switches for ultralow-power integrated 

circuits, as they effectively address the issue of power dissipation. 

The primary obstacles that impede the utilization of TFETs in 

commercial goods are the requirement for high-quality III-V 

materials and their derivatives with small physical dimensions, as 

well as limitations in layout density. This study presents a 

methodical approach to creating ideal Artificial Neural Network 

(ANN) models. This involves a thorough consideration of the 

influence of the ANN size on both model correctness and SPICE 

simulation. To provide visual representations that are appropriate 

for circuit simulations, the effectiveness of computer-aided design 

(CAD) models for innovation is assessed using powerful full-

quantum modeling tools to produce visuals. 

Keywords—InAs, GaSb, TFET, TCAD, III-V material, ANN, Ultra-

Low power 

I. INTRODUCTION  

Complementary metal oxide semiconductors (CMOS) 
remain a reliable and widely adopted technology but face 
challenges with scaling and power consumption. FinFETs offer 
improved performance and efficiency compared to CMOS but 
introduce complexity and higher costs. Tunnel Field-Effect 
Transistors (TFETs) represent a promising avenue in 
semiconductor technology, owing to their potential for low-
power operation and reduced leakage currents compared to 
conventional CMOS transistors. Significant advancements in 
device design, material research, and fabrication techniques 
have marked the evolution of TFET technology. TFETs 
originate from utilizing quantum tunneling for transistor 
operations [1]–[3]. Early research focused on theoretical 
models and experimental demonstrations of the TFET 
behavior. Initial TFET designs faced challenges related to 
suboptimal performance, limited scalability, and manufacturing 
complexities. Researchers have explored a wide range of 
semiconductor materials to optimize TFET performance. III-V 

compound semiconductors such as InAs, InGaAs, GaSb, and 
InSb have emerged as promising candidates because of their 
favorable band structures for tunneling. Novel TFET 
architectures have been proposed and developed to enhance 
device performance. These include heterostructure TFETs, 
vertical TFETs, and nanowire TFETs, which offer improved 
control over tunneling phenomena and reduced leakage 
currents. Advances in gate-stack engineering have enabled 
better electrostatic control and reduced tunneling barriers in 
TFETs [4]-[6].  

High-k dielectric and metal gate technologies have 
been integrated to improve gate control and enhance device 
reliability. The integration of TFETs into the existing 
semiconductor manufacturing processes has been a significant 
focus of research and development. Process technologies 
compatible with mainstream CMOS fabrication have been 
explored to seamlessly integrate TFETs with existing circuitry 
[7]. Currently, TFET technology is still in the research and 
development phase, with ongoing efforts aimed at addressing 
key challenges, such as improving device performance, 
enhancing scalability, and optimizing manufacturing processes 
[8]-[10]. TFETs have demonstrated promising characteristics 
for ultralow-power applications and energy-efficient 
computing, making them attractive candidates for future 
semiconductor technologies.  

Machine learning techniques have been utilized for 
fault detection and diagnosis in TFET devices. By analyzing 
device characteristics and performance data, machine-learning 
models can identify anomalies and predict potential failure 
modes, enabling proactive maintenance and reliability 
improvement. Explore machine-learning techniques for 
integrating TFETs with other semiconductor devices and 
materials. By analyzing the compatibility and interface 
properties, machine learning models can help identify optimal 
integration strategies and design guidelines for heterogeneous 
device integration. Applying machine learning techniques to 
TFETs offers a wide range of opportunities for device 
optimization, performance prediction, fault detection, design 
exploration, and system-level integration [11]–[12]. Machine 
learning can expedite the development and application of 
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TFET-based technologies across various domains, including 
electronics, computers, and other industries. 

II. DEVICE STRUCTURE 

The GaSb-InAs vertical TFET features a GaSb pocket and a 
split drain structure, as depicted in Figure 1. Indium arsenide 
(InAs) was used as the drain and channel, whereas gallium 
antimonide (GaSb) was the source material. Both dual-gate and 
double-gate materials were used. The channel conductivity was 
modulated by the GaSb pocket layer. 

 
 

Fig.1 GaSb-InAs Vertical TFET 

TABLE I:  INAS-GASB VTFET DEVICE PARAMETERS 

Parameters Value 
Source doping 1×10-20 cm-3 

Drain doping 5×10-18 cm-3 

Channel doping 1×10-16 cm-3 

Channel thickness 12 nm 

Gate dielectric thickness 2 nm 

Channel length  30 nm 

Gate work-function (M1) 4.2 eV 

Gate work-function (M2) 4.6 eV 

 
TABLE II: MATERIAL PROPERTIES USED IN THE SIMULATION 

Properties GaSb InAs 

Band-gap (eV) 0.726 0.36 

Mobility of electrons (cm2/V.s) 3000 30000 

Mobility of holes (cm2/V.s) 1000 240 

Mass of electron m0 0.063m0 0.027m0 

Mass of holes m0* 0.4m0* 0.33m0* 

 

�� ∝ exp �− 4√2m∗	
∗��3|�|ℏ�	
∗ + ΔΦ� ��Si�ox

�ox�Si� ΔΦ               (1) 

 
In TFETs, the drain current (ION) can exhibit characteristics that 
are different from those of traditional MOSFETs owing to the 
tunneling mechanism. TFETs typically operate at lower 
voltages and offer potential advantages in terms of lower 

leakage currents and better subthreshold swing than 
conventional MOSFETs.  
 

 
Fig.2 Transfer characteristics 

 
The Figure-2 illustrates the ION value for this proposed model 
was 6.36 x 10-5 A/μm at VGS=0.7 V and VDS=0.7 V. By 
examining the slope of the IDS vs. VGS curve in the subthreshold 
region refer Eq (1), one can assess the TFET's ability to turn off 
and its potential for achieving low-power operation. 

 

 
Fig.3 Output characteristics 

 
Figure 3 shows the output characteristics of a GaSb-InAs TFET. 

This graph illustrates the variations in ID and VDS as functions 

of the VGS values. In TFETs, unlike conventional MOSFETs, 

the drain current typically increases with decreasing drain-

source voltage owing to the tunneling mechanism. This unique 

behavior often results in subthreshold swing values lower than 

the classical limit of 60 mV/decade, which is a significant 

advantage in low-power applications. As VGS is increased 

beyond a certain threshold, TFETs enter the saturation region 
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where IDS levels off. Unlike MOSFETs, TFETs do not have a 

distinct triode region with linear IDS vs. VDS behavior due to the 

tunneling mechanism dominating the current flow. In the 

subthreshold region (low VGS), TFETs exhibit a nearly 

exponential increase in IDS with increasing VDS [13]. This 

behavior is due to the band-to-band tunneling process, which 

becomes more significant as the drain-source voltage increases. 

 
Fig.4 Transconductance 

 �� =  ���� !"                    (2) 

 
In TFETs, the transconductance (gm) is influenced by various 
factors, including the band-to-band tunneling mechanism, 
energy band structure of the semiconductor material, and 
device geometry. Unlike conventional MOSFETs, where 
transconductance is primarily determined by the carrier 
mobility and inversion charge, TFETs rely on the tunneling 
phenomenon across the bandgap. The gm of TFETs may exhibit 
different characteristics compared to MOSFETs owing to the 
unique operating principle based on quantum tunneling. [14]  
 

Figure 4 illustrates the gm characteristics of the 
proposed device. At VGS=0.7 V, VDS=0.7 V gm=274 μS/μm. 
The dependence of gm on the gate bias Eq (2), device 
dimensions, material properties, and operating conditions 
makes the analysis and optimization of TFET transconductance 
an important aspect in TFET design and characterization. Small 
changes in VGS can lead to significant changes in the tunneling 
current, affecting the transconductance. The transconductance 
(gm) is related to the subthreshold slope, which quantifies the 

change in VGS required to change the drain current by a decade.  
In TFETs, achieving a high-gain bandwidth product (GBP) can 
be challenging because of the device's unique characteristics, 
such as subthreshold operation and the impact of band-to-band 
tunneling on the small-signal behavior [15].  
 

The GBP value was 48.9 GHZ as depicted in Figure 5. 
Designers often need to optimize device parameters such as 
gate length, gate oxide thickness, and doping profiles to achieve 
the desired GBP while ensuring low power consumption and 
acceptable levels of leakage current. 

 

 
 

Fig.5 Gain Bandwidth Product 

 
TABLE III  INAS-GASB TFET  SIMULATION RESULTS 

 

Parameters Values 
ON Current ION (A/μm) 6.36 x 10-5 

OFF Current IOFF (A/μm) 5.76 x 10-14 

ION/IOFF 1.13 x 1012 

Sub-threshold swing SS (mV/dec) 20.24 

Threshold Voltage Vth (V) 0.25489 GHZ 

Transconductance �� (μS/μm) 274 

Cut-off Frequency fT (Hz) 188 GHZ 

Transit Time τ (sec) 0.59 Pico Seconds 

Gain Bandwidth Product GBP (Hz) 
48.9 

III. MACHINE LEARNING APPROACH 

Machine learning (ML) approaches in the context of 
TFET) involve leveraging ML algorithms and techniques to 
optimize the TFET design, predict device characteristics, and 
improve performance. A comprehensive flowchart of the 
machine-learning algorithm implementation is shown in Figure 
6. ML algorithms can be used to develop accurate models that 
capture the complex behavior of TFETs. These models 
facilitate the simulation of device functionality under various 
conditions, thereby aiding the iterative design enhancement 
process. By identifying patterns in simulation data or real-world 
measurements, machine learning techniques, such as ANNs, 
can effectively forecast the behavior of TFETs.  

Define the optimization objective, which can involve 
maximizing the performance metrics. such as transconductance 
(gm) or minimizing metrics such as threshold voltage (Vth), 
leakage current, or subthreshold swing. Obtain a collection of 
data that encompasses the characteristics of transistors as well 
as the corresponding metrics of their performance. The dataset 
should encompass a diverse range of transistor designs, 
incorporating variations in the shape, material composition, 
doping levels, and bias settings. The data were divided into 
three distinct subsets: training, validation, and testing [15]. The 
training set imparts fresh knowledge to the ANN model, which 
evaluates the model parameters and prevents overfitting, and 
the testing set assesses the performance of the model.  
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Fig.6 A comprehensive flow chart for machine learning algorithm  

 

Develop the architecture of an artificial neural 

network (ANN) model to enable optimization of transistor 

parameters [16]. The number of layers, neurons per layer, 

activation functions, and regularization techniques are chosen 

based on the complexity of the transistor behavior and dataset 

characteristics. To train the ANN model, appropriate 

optimization techniques are used, such as Adam optimization, 

stochastic gradient descent (SGD), or gradient descent [13]. 

 

The validation set was used to monitor the training 

process and adjust the hyperparameters as required to prevent 

overfitting. Appropriate evaluation metrics, such as the mean 

squared error (MSE) or root mean squared error (RMSE), were 

used to assess the performance of the trained artificial neural 

network (ANN) model on the testing dataset. Once the ANN 

model was trained and validated, it was used to optimize the 

transistor parameters. Provide initial transistor configurations 

as input to the model and let it predict the optimal parameter 

values that maximize performance metrics or minimize 

undesirable characteristics [17]-[18].  

 

The conditions that contained the real interfacial 

layers were accomplished by altering the prior method of 

manipulating the valence band offset values and using the 

potential gradient profit. Using thermo-voltage measurements 

of GaSb-InAs core-shell nanowires, scientists can accurately 

determine the dominant carrier type at ambient temperature and 

in the quantum transport domain. The quantum transport 

regime, even in the circumstances, because conductance 

measurement prohibits such a distinction from being 

established. In addition, people demonstrate that theoretical 

modeling, which uses conductance data as input, can duplicate 

the reported thermal voltage because it is assumed that the 

energy of the electron and hole states shifts differentially 

depending on the gate voltage applied. 

 

$%&� = '() ∑ (+,%-./��0 , − 1$�0,2��0 ,)� )34(     (3) 

 

It assesses the proximity between the expected and actual 

values Eq (3). The root mean square error (RMSE) is widely 

recognized as the predominant loss function in regression 

analysis. 	$$5$ 6/�� =  7"3�879:;<7"3� = 100        (4) 
where σSim and σPred represent the standard deviation of the 

simulated and the ANN predicted test dataset, respectively Eq 

(4). SPICE is utilized for the simulation of circuits using the 

ANN models specifically designed for n-type and p-type 

TFETs. To demonstrate the application of the ANN model in 

circuit modeling, we replicate the inverter.  

 

 
 

Fig. 7 Symbol of (a) nTFET and (b) pTFET 
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Fig. 8 TFET Inverter 

 

Fig. 7 illustrates the n-type and p-type symbol and the TFET 

inverter is depicted in Figure 8.  

 

 
 

Fig. 9 TFET Inverter Output Waveform 

The output waveform of the TFET inverter is shown 

in Figure 10. Obtain a deeper understanding of the variables 

that affect the performance of an ANN model and investigate 

methods to improve its precision and dependability [19].  

 

 
 

Fig. 10 Voltage Transfer Characteristics (VTC) 

The training process of the ANN model was refined using input 
obtained from cadence simulations and experimental data. The 
model's structure, optimization strategies, and input features are 
refined to enhance its performance and capacity to generalize 
and assess the proximity between the expected and actual 
values. The root mean square error (RMSE) is widely 
recognized as the predominant loss function in regression 
analysis. The voltage-transfer characteristics of the inverter are 
shown in Figure 10. The input voltage (Vin) was adjusted 
within the range of 0V to 5V. The ANN model accurately 
identified change sites with a high level of dependability. 

IV. CONCLUSION 

 
This study examined the efficacy of TFETs as viable elements 
for constructing energy-efficient hardware platforms 
specifically designed for machine learning applications. TFETs 
exhibit favorable attributes, including sharp subthreshold 
slopes, less leakage currents, and decreased power 
consumption, in contrast to standard CMOS technology. TFETs 
have properties that make them very suitable for energy-
efficient computation, especially when used in neural network 
implementations. The Voltage transfer and output 
characteristics of the TFET Inverter show significant 
concurrence with the ANN models due to their distinctive pre- 
and post-processing procedures. The ANN model was created 
using Verilog-A to accurately simulate the behavior of the 
circuit. The ANN models of the inverter demonstrate the same 
voltage transfer properties and output patterns as the ANN 
models. Moreover, the incorporation of TFETs into ANNs has 
demonstrated promising advantages in terms of diminishing 
power consumption and improving computing efficiency. 
TFETs include distinct attributes that facilitate the creation of 
low-power ANN structures, which are essential for applications 
utilized in situations with limited resources or embedded 

systems. 
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