Published on June 2019 | Optoelectronics
In this communication, we report on Cu2SnS3 quantum dots synthesized by the solvothermal process using different sol- vents. The optical properties of the quantum dots are analyzed by UV-Vis-NIR and photoluminescence spectroscopy. The results suggest that Cu2SnS3 material has tunable energy bandgap and appropriate wavelength for fabrication of light emitting diodes and laser diodes as sources for fiber optic communication. They exhibit wide absorption in the near infrared range. Further morphological studies with the use of atomic force microscope confirm the surface topography and the existence of quantum dots. The observed characteristics prove the efficiency of Cu2SnS3 quantum dots for O-band wavelength detection used in fiber optic communication and solar cell applications.